% Generated by roxygen2: do not edit by hand % Please edit documentation in R/antibiogram.R \name{antibiogram} \alias{antibiogram} \alias{wisca} \alias{retrieve_wisca_parameters} \alias{plot.antibiogram} \alias{autoplot.antibiogram} \alias{knit_print.antibiogram} \title{Generate Traditional, Combination, Syndromic, or WISCA Antibiograms} \source{ \itemize{ \item Bielicki JA \emph{et al.} (2016). \strong{Selecting appropriate empirical antibiotic regimens for paediatric bloodstream infections: application of a Bayesian decision model to local and pooled antimicrobial resistance surveillance data} \emph{Journal of Antimicrobial Chemotherapy} 71(3); \doi{10.1093/jac/dkv397} \item Bielicki JA \emph{et al.} (2020). \strong{Evaluation of the coverage of 3 antibiotic regimens for neonatal sepsis in the hospital setting across Asian countries} \emph{JAMA Netw Open.} 3(2):e1921124; \doi{10.1001.jamanetworkopen.2019.21124} \item Klinker KP \emph{et al.} (2021). \strong{Antimicrobial stewardship and antibiograms: importance of moving beyond traditional antibiograms}. \emph{Therapeutic Advances in Infectious Disease}, May 5;8:20499361211011373; \doi{10.1177/20499361211011373} \item Barbieri E \emph{et al.} (2021). \strong{Development of a Weighted-Incidence Syndromic Combination Antibiogram (WISCA) to guide the choice of the empiric antibiotic treatment for urinary tract infection in paediatric patients: a Bayesian approach} \emph{Antimicrobial Resistance & Infection Control} May 1;10(1):74; \doi{10.1186/s13756-021-00939-2} \item \strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 5th Edition}, 2022, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}. } } \usage{ antibiogram(x, antimicrobials = where(is.sir), mo_transform = "shortname", ab_transform = "name", syndromic_group = NULL, add_total_n = FALSE, only_all_tested = FALSE, digits = ifelse(wisca, 1, 0), formatting_type = getOption("AMR_antibiogram_formatting_type", ifelse(wisca, 14, 18)), col_mo = NULL, language = get_AMR_locale(), minimum = 30, combine_SI = TRUE, sep = " + ", wisca = FALSE, simulations = 1000, conf_interval = 0.95, interval_side = "two-tailed", info = interactive(), ...) wisca(x, antimicrobials = where(is.sir), ab_transform = "name", syndromic_group = NULL, only_all_tested = FALSE, digits = 1, formatting_type = getOption("AMR_antibiogram_formatting_type", 14), col_mo = NULL, language = get_AMR_locale(), combine_SI = TRUE, sep = " + ", simulations = 1000, conf_interval = 0.95, interval_side = "two-tailed", info = interactive(), ...) retrieve_wisca_parameters(wisca_model, ...) \method{plot}{antibiogram}(x, ...) \method{autoplot}{antibiogram}(object, ...) \method{knit_print}{antibiogram}(x, italicise = TRUE, na = getOption("knitr.kable.NA", default = ""), ...) } \arguments{ \item{x}{A \link{data.frame} containing at least a column with microorganisms and columns with antimicrobial results (class 'sir', see \code{\link[=as.sir]{as.sir()}}).} \item{antimicrobials}{A vector specifying the antimicrobials to include in the antibiogram (see \emph{Examples}). Will be evaluated using \code{\link[=guess_ab_col]{guess_ab_col()}}. This can be: \itemize{ \item Any antimicrobial name or code that matches to a column name in \code{x} \item A column name in \code{x} that contains SIR values \item Any \link[=antimicrobial_selectors]{antimicrobial selector}, such as \code{\link[=aminoglycosides]{aminoglycosides()}} or \code{\link[=carbapenems]{carbapenems()}} \item A combination of the above, using \code{c()}, e.g.: \itemize{ \item \code{c(aminoglycosides(), "AMP", "AMC")} \item \code{c(aminoglycosides(), carbapenems())} } \item Combination therapy, indicated by using \code{"+"}, with or without \link[=antimicrobial_selectors]{antimicrobial selectors}, e.g.: \itemize{ \item \code{"cipro + genta"} \item \code{"TZP+TOB"} \item \code{c("TZP", "TZP+GEN", "TZP+TOB")} \item \code{carbapenems() + "GEN"} \item \code{carbapenems() + c("", "GEN")} \item \code{carbapenems() + c("", aminoglycosides())} } }} \item{mo_transform}{A character to transform microorganism input - must be \code{"name"}, \code{"shortname"} (default), \code{"gramstain"}, or one of the column names of the \link{microorganisms} data set: "mo", "fullname", "status", "kingdom", "phylum", "class", "order", "family", "genus", "species", "subspecies", "rank", "ref", "oxygen_tolerance", "source", "lpsn", "lpsn_parent", "lpsn_renamed_to", "mycobank", "mycobank_parent", "mycobank_renamed_to", "gbif", "gbif_parent", "gbif_renamed_to", "prevalence", or "snomed". Can also be \code{NULL} to not transform the input or \code{NA} to consider all microorganisms 'unknown'.} \item{ab_transform}{A character to transform antimicrobial input - must be one of the column names of the \link{antimicrobials} data set (defaults to \code{"name"}): "ab", "cid", "name", "group", "atc", "atc_group1", "atc_group2", "abbreviations", "synonyms", "oral_ddd", "oral_units", "iv_ddd", "iv_units", or "loinc". Can also be \code{NULL} to not transform the input.} \item{syndromic_group}{A column name of \code{x}, or values calculated to split rows of \code{x}, e.g. by using \code{\link[=ifelse]{ifelse()}} or \code{\link[dplyr:case_when]{case_when()}}. See \emph{Examples}.} \item{add_total_n}{\emph{(deprecated in favour of \code{formatting_type})} A \link{logical} to indicate whether \code{n_tested} available numbers per pathogen should be added to the table (default is \code{TRUE}). This will add the lowest and highest number of available isolates per antimicrobial (e.g, if for \emph{E. coli} 200 isolates are available for ciprofloxacin and 150 for amoxicillin, the returned number will be "150-200"). This option is unavailable when \code{wisca = TRUE}; in that case, use \code{\link[=retrieve_wisca_parameters]{retrieve_wisca_parameters()}} to get the parameters used for WISCA.} \item{only_all_tested}{(for combination antibiograms): a \link{logical} to indicate that isolates must be tested for all antimicrobials, see \emph{Details}.} \item{digits}{Number of digits to use for rounding the antimicrobial coverage, defaults to 1 for WISCA and 0 otherwise.} \item{formatting_type}{Numeric value (1–22 for WISCA, 1-12 for non-WISCA) indicating how the 'cells' of the antibiogram table should be formatted. See \emph{Details} > \emph{Formatting Type} for a list of options.} \item{col_mo}{Column name of the names or codes of the microorganisms (see \code{\link[=as.mo]{as.mo()}}) - the default is the first column of class \code{\link{mo}}. Values will be coerced using \code{\link[=as.mo]{as.mo()}}.} \item{language}{Language to translate text, which defaults to the system language (see \code{\link[=get_AMR_locale]{get_AMR_locale()}}).} \item{minimum}{The minimum allowed number of available (tested) isolates. Any isolate count lower than \code{minimum} will return \code{NA} with a warning. The default number of \code{30} isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as best practice, see \emph{Source}.} \item{combine_SI}{A \link{logical} to indicate whether all susceptibility should be determined by results of either S, SDD, or I, instead of only S (default is \code{TRUE}).} \item{sep}{A separating character for antimicrobial columns in combination antibiograms.} \item{wisca}{A \link{logical} to indicate whether a Weighted-Incidence Syndromic Combination Antibiogram (WISCA) must be generated (default is \code{FALSE}). This will use a Bayesian decision model to estimate regimen coverage probabilities using \href{https://en.wikipedia.org/wiki/Monte_Carlo_method}{Monte Carlo simulations}. Set \code{simulations}, \code{conf_interval}, and \code{interval_side} to adjust.} \item{simulations}{(for WISCA) a numerical value to set the number of Monte Carlo simulations.} \item{conf_interval}{A numerical value to set confidence interval (default is \code{0.95}).} \item{interval_side}{The side of the confidence interval, either \code{"two-tailed"} (default), \code{"left"} or \code{"right"}.} \item{info}{A \link{logical} to indicate info should be printed - the default is \code{TRUE} only in interactive mode.} \item{...}{When used in \link[knitr:kable]{R Markdown or Quarto}: arguments passed on to \code{\link[knitr:kable]{knitr::kable()}} (otherwise, has no use).} \item{wisca_model}{The outcome of \code{\link[=wisca]{wisca()}} or \code{\link[=antibiogram]{antibiogram(..., wisca = TRUE)}}.} \item{object}{An \code{\link[=antibiogram]{antibiogram()}} object.} \item{italicise}{A \link{logical} to indicate whether the microorganism names in the \link[knitr:kable]{knitr} table should be made italic, using \code{\link[=italicise_taxonomy]{italicise_taxonomy()}}.} \item{na}{Character to use for showing \code{NA} values.} } \description{ Create detailed antibiograms with options for traditional, combination, syndromic, and Bayesian WISCA methods. Adhering to previously described approaches (see \emph{Source}) and especially the Bayesian WISCA model (Weighted-Incidence Syndromic Combination Antibiogram) by Bielicki \emph{et al.}, these functions provide flexible output formats including plots and tables, ideal for integration with R Markdown and Quarto reports. } \details{ These functions return a table with values between 0 and 100 for \emph{susceptibility}, not resistance. \strong{Remember that you should filter your data to let it contain only first isolates!} This is needed to exclude duplicates and to reduce selection bias. Use \code{\link[=first_isolate]{first_isolate()}} to determine them with one of the four available algorithms: isolate-based, patient-based, episode-based, or phenotype-based. For estimating antimicrobial coverage, especially when creating a WISCA, the outcome might become more reliable by only including the top \emph{n} species encountered in the data. You can filter on this top \emph{n} using \code{\link[=top_n_microorganisms]{top_n_microorganisms()}}. For example, use \code{top_n_microorganisms(your_data, n = 10)} as a pre-processing step to only include the top 10 species in the data. The numeric values of an antibiogram are stored in a long format as the \link[=attributes]{attribute} \code{long_numeric}. You can retrieve them using \code{attributes(x)$long_numeric}, where \code{x} is the outcome of \code{\link[=antibiogram]{antibiogram()}} or \code{\link[=wisca]{wisca()}}. This is ideal for e.g. advanced plotting. \subsection{Formatting Type}{ The formatting of the 'cells' of the table can be set with the argument \code{formatting_type}. In these examples, \code{5} indicates the antimicrobial coverage (\code{4-6} the confidence level), \code{15} the number of susceptible isolates, and \code{300} the number of tested (i.e., available) isolates: \enumerate{ \item 5 \item 15 \item 300 \item 15/300 \item 5 (300) \item 5\% (300) \item 5 (N=300) \item 5\% (N=300) \item 5 (15/300) \item 5\% (15/300) \item 5 (N=15/300) \item 5\% (N=15/300) \item 5 (4-6) \item 5\% (4-6\%) - \strong{default for WISCA} \item 5 (4-6,300) \item 5\% (4-6\%,300) \item 5 (4-6,N=300) \item 5\% (4-6\%,N=300) - \strong{default for non-WISCA} \item 5 (4-6,15/300) \item 5\% (4-6\%,15/300) \item 5 (4-6,N=15/300) \item 5\% (4-6\%,N=15/300) } The default can be set globally with the package option \code{\link[=AMR-options]{AMR_antibiogram_formatting_type}}, e.g. \code{options(AMR_antibiogram_formatting_type = 5)}. Do note that for WISCA, the total numbers of tested and susceptible isolates are less useful to report, since these are included in the Bayesian model and apparent from the susceptibility and its confidence level. Set \code{digits} (defaults to \code{0}) to alter the rounding of the susceptibility percentages. } \subsection{Antibiogram Types}{ There are various antibiogram types, as summarised by Klinker \emph{et al.} (2021, \doi{10.1177/20499361211011373}), and they are all supported by \code{\link[=antibiogram]{antibiogram()}}. For clinical coverage estimations, \strong{use WISCA whenever possible}, since it provides more precise coverage estimates by accounting for pathogen incidence and antimicrobial susceptibility, as has been shown by Bielicki \emph{et al.} (2020, \doi{10.1001.jamanetworkopen.2019.21124}). See the section \emph{Explaining WISCA} on this page. Do note that WISCA is pathogen-agnostic, meaning that the outcome is not stratied by pathogen, but rather by syndrome. \enumerate{ \item \strong{Traditional Antibiogram} Case example: Susceptibility of \emph{Pseudomonas aeruginosa} to piperacillin/tazobactam (TZP) Code example: \if{html}{\out{