% Generated by roxygen2: do not edit by hand % Please edit documentation in R/resistance.R \name{resistance} \alias{resistance} \alias{S} \alias{SI} \alias{IR} \alias{R} \alias{n_rsi} \alias{susceptibility} \alias{rsi} \title{Calculate resistance of isolates} \source{ \strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition}, 2014, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}. } \usage{ S(ab1, ab2 = NULL, minimum = 30, as_percent = FALSE) SI(ab1, ab2 = NULL, minimum = 30, as_percent = FALSE) IR(ab1, minimum = 30, as_percent = FALSE) R(ab1, minimum = 30, as_percent = FALSE) n_rsi(ab1, ab2 = NULL) resistance(ab1, include_I = TRUE, minimum = 30, as_percent = FALSE) susceptibility(ab1, ab2 = NULL, include_I = FALSE, minimum = 30, as_percent = FALSE) rsi(ab1, ab2 = NA, interpretation = "IR", minimum = 30, as_percent = FALSE, info = FALSE, warning = TRUE) } \arguments{ \item{ab1}{vector of antibiotic interpretations, they will be transformed internally with \code{\link{as.rsi}}} \item{ab2}{like \code{ab}, a vector of antibiotic interpretations. Use this to calculate (the lack of) co-resistance: the probability where one of two drugs have a susceptible result. See Examples.} \item{minimum}{minimal amount of available isolates. Any number lower than \code{minimum} will return \code{NA}. The default number of \code{30} isolates is advised by the CLSI as best practice, see Source.} \item{as_percent}{logical to indicate whether the output must be returned as percent (text), will else be a double} \item{include_I}{logical to indicate whether antimicrobial interpretations of "I" should be included} \item{interpretation}{antimicrobial interpretation} \item{info}{\emph{DEPRECATED} calculate the amount of available isolates and print it, like \code{n = 423}} \item{warning}{\emph{DEPRECATED} show a warning when the available amount of isolates is below \code{minimum}} } \value{ Double or, when \code{as_percent = TRUE}, a character. } \description{ These functions can be used to calculate the (co-)resistance of microbial isolates (i.e. percentage S, SI, IR or R). All functions can be used in \code{dplyr}s \code{\link[dplyr]{summarise}} and support grouped variables, see \emph{Examples}. \cr\cr \code{R} and \code{IR} can be used to calculate resistance, \code{S} and \code{SI} can be used to calculate susceptibility.\cr \code{n_rsi} counts all cases where antimicrobial interpretations are available. } \details{ \strong{Remember that you should filter your table to let it contain only first isolates!} Use \code{\link{first_isolate}} to determine them in your data set. The functions \code{resistance} and \code{susceptibility} are wrappers around \code{IR} and \code{S}, respectively. All functions except \code{rsi} use hybrid evaluation (i.e. using C++), which makes these functions 20-30 times faster than the old \code{rsi} function. This latter function is still available for backwards compatibility but is deprecated. \if{html}{ \cr\cr To calculate the probability (\emph{p}) of susceptibility of one antibiotic, we use this formula: \out{
}\figure{mono_therapy.png}\out{
} To calculate the probability (\emph{p}) of susceptibility of more antibiotics (i.e. combination therapy), we need to check whether one of them has a susceptible result (as numerator) and count all cases where all antibiotics were tested (as denominator). \cr \cr For two antibiotics: \out{
}\figure{combi_therapy_2.png}\out{
} \cr Theoretically for three antibiotics: \out{
}\figure{combi_therapy_3.png}\out{
} } } \examples{ # Calculate resistance R(septic_patients$amox) IR(septic_patients$amox) # Or susceptibility S(septic_patients$amox) SI(septic_patients$amox) # Since n_rsi counts available isolates (and is used as denominator), # you can calculate back to e.g. count resistant isolates: IR(septic_patients$amox) * n_rsi(septic_patients$amox) library(dplyr) septic_patients \%>\% group_by(hospital_id) \%>\% summarise(p = S(cipr), n = n_rsi(cipr)) # n_rsi works like n_distinct in dplyr # Calculate co-resistance between amoxicillin/clav acid and gentamicin, # so we can see that combination therapy does a lot more than mono therapy: S(septic_patients$amcl) # p = 67.3\% n_rsi(septic_patients$amcl) # n = 1570 S(septic_patients$gent) # p = 74.0\% n_rsi(septic_patients$gent) # n = 1842 with(septic_patients, S(amcl, gent)) # p = 92.1\% with(septic_patients, n_rsi(amcl, gent)) # n = 1504 septic_patients \%>\% group_by(hospital_id) \%>\% summarise(cipro_p = S(cipr, as_percent = TRUE), cipro_n = n_rsi(cipr), genta_p = S(gent, as_percent = TRUE), genta_n = n_rsi(gent), combination_p = S(cipr, gent, as_percent = TRUE), combination_n = n_rsi(cipr, gent)) \dontrun{ # calculate current empiric combination therapy of Helicobacter gastritis: my_table \%>\% filter(first_isolate == TRUE, genus == "Helicobacter") \%>\% summarise(p = S(amox, metr), # amoxicillin with metronidazole n = n_rsi(amox, metr)) } } \keyword{antibiotics} \keyword{isolate} \keyword{isolates} \keyword{resistance} \keyword{rsi} \keyword{rsi_df} \keyword{susceptibility}