Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 43 34 26  1 37  2  6 58  7 45 41 19  4  7 60 35 51 21 39 55 61 14 47 48 60
#>  [26] 21 43 19  7 17 27 10 44 23 42  8 18 24 49 38 50 30 38 27  5 55 54 53 63 10
#>  [51] 51 11  7 33 40 55 51 52 19 42 43 37 25 57 61 53 56 41 60 46 62 26 38 45 59
#>  [76] 42 62 23 24  9 27 25 28 58  6 61  6 51  8 12 22 41 27 19  3 31 17  8 28 62
#> [101] 50 56 20 30 35 56  7 25 23 11 52 54 59  5 31 46 53 28 21 18 45 48 22 12 15
#> [126] 38 15  9 57 55 44 12 57 52 63 39 55 36  3 16  5 33 16 30 55 42 55 31 50 61
#> [151] 16 14 32  9 50 59  2 47  2  8 39 21 48 56 56 57 17  1 11 53 58 32  1 13 36
#> [176] 23  6 33 40 46  7 40 59 50 36 57 29 24 61 25 64 59  4 47 15 62  5 16 60 59
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [13]  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
#>  [25] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
#>  [37]  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE
#>  [49]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
#>  [61] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [73] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE
#>  [85]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#>  [97]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
#> [109] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
#> [121]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
#> [145]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
#> [157] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#> [169]  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
#> [181]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE
#> [193] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-08-28 390178     57 M      Clinical B_STRPT_SLVR S     NA    NA    S    
#> 2 2002-10-20 F35553     51 M      ICU      B_STPHY_AURS S     NA    S     NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 B40844  2012-10-18 A         FALSE      
#>  2 F54287  2010-07-05 A         FALSE      
#>  3 800264  2008-04-10 B         TRUE       
#>  4 F35553  2002-01-22 C         TRUE       
#>  5 1D4C00  2011-04-04 A         TRUE       
#>  6 D91570  2002-05-07 C         FALSE      
#>  7 E45CF0  2003-07-06 A         FALSE      
#>  8 C6F894  2016-07-11 B         TRUE       
#>  9 8E5544  2003-09-12 A         FALSE      
#> 10 970832  2013-07-09 B         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [183]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical   2012-10-18 B40844          1 TRUE       
#>  2 Clinical   2010-07-05 F54287          1 TRUE       
#>  3 Outpatient 2008-04-10 800264          1 TRUE       
#>  4 ICU        2002-01-22 F35553          1 TRUE       
#>  5 Clinical   2011-04-04 1D4C00          1 TRUE       
#>  6 Clinical   2002-05-07 D91570          1 TRUE       
#>  7 Clinical   2003-07-06 E45CF0          1 TRUE       
#>  8 ICU        2016-07-11 C6F894          1 TRUE       
#>  9 Clinical   2003-09-12 8E5544          1 TRUE       
#> 10 Clinical   2013-07-09 970832          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          112             14            51            71
#> 2 ICU                61             13            41            50
#> 3 Outpatient         10              7            10            10
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [191]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 B40844  B_ESCHR_COLI Clinical   TRUE        
#>  2 F54287  B_STRPT_ANGN Clinical   TRUE        
#>  3 800264  B_ESCHR_COLI Outpatient TRUE        
#>  4 F35553  B_PROTS_MRBL ICU        TRUE        
#>  5 1D4C00  B_KLBSL_AERG Clinical   TRUE        
#>  6 D91570  B_STPHY_CONS Clinical   TRUE        
#>  7 E45CF0  B_KLBSL_PNMN Clinical   TRUE        
#>  8 C6F894  B_STPHY_AURS ICU        TRUE        
#>  9 8E5544  B_STRPT_PNMN Clinical   TRUE        
#> 10 970832  B_STRPT_DYSG Clinical   TRUE        
#> # … with 190 more rows
# }