Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 49 26 15  5 29 22 12 56 27 56 15 48 11 51 52 51 54 10 18 34 37 58 21  6  1
#>  [26] 50 37 27 51 56 57  1 19 10 38 38 56 56 35 44 38  3  7  6 23 49 26 29 10 23
#>  [51] 17 37 59 44 29 55 41  7 49 38 36 40 57 32 46  1  4 12 33  1 37 20 32 37  5
#>  [76] 51 43 46 10 31 56  6 53 52 12 46 10 56 51 38  1  6  8 51 43 57 24 18 20 43
#> [101] 25 25 16 43 20 48 57 14  8  2 51 58 56 15 47 18 30 12 34 57 49 56 23 13 19
#> [126] 42 54 10 37 11 47 12 43 31 40 36 53 46 45 30 16 44 49  5  4 40 12 16 56 53
#> [151]  3 31 33 34 58 39 42 17 23 14 26  4 50 57 17 28 56 53 22 20 53 24  9 12 34
#> [176] 31 34 55 25 11 33 29 21 13 20  7 23  6 32 43 31 26 48 17 27 53 37  4 11 32
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
#>  [13] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
#>  [25] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
#>  [37] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [49]  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#>  [61] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
#>  [73]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE
#>  [85]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#>  [97]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
#> [109] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#> [121]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
#> [133] FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE
#> [145]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
#> [157] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
#> [169] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
#> [181] FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> [193] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-05-15 C70694     54 M      Clinical B_STPHY_AURS R     NA    S     R    
#> 2 2002-06-06 24D393     20 F      Clinical B_ESCHR_COLI R     NA    NA    NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 A97263  2015-04-15 A         FALSE      
#>  2 534816  2008-10-28 B         FALSE      
#>  3 904485  2005-08-16 B         TRUE       
#>  4 A26548  2003-04-13 B         TRUE       
#>  5 AB0003  2009-06-24 C         FALSE      
#>  6 B52127  2007-06-03 C         FALSE      
#>  7 E1C9D4  2004-12-23 B         FALSE      
#>  8 612042  2017-03-15 A         FALSE      
#>  9 A31059  2008-12-04 A         FALSE      
#> 10 D39422  2017-03-14 B         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [176]
#>    ward     date       patient new_index new_logical
#>    <chr>    <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical 2015-04-15 A97263          1 TRUE       
#>  2 Clinical 2008-10-28 534816          1 TRUE       
#>  3 ICU      2005-08-16 904485          1 TRUE       
#>  4 ICU      2003-04-13 A26548          1 TRUE       
#>  5 Clinical 2009-06-24 AB0003          1 FALSE      
#>  6 ICU      2007-06-03 B52127          1 TRUE       
#>  7 Clinical 2004-12-23 E1C9D4          1 TRUE       
#>  8 ICU      2017-03-15 612042          1 TRUE       
#>  9 Clinical 2008-12-04 A31059          1 TRUE       
#> 10 Clinical 2017-03-14 D39422          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          114             14            49            68
#> 2 ICU                51             11            30            36
#> 3 Outpatient         11              7            11            11
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [187]
#>    patient mo           ward     flag_episode
#>    <chr>   <mo>         <chr>    <lgl>       
#>  1 A97263  B_ESCHR_COLI Clinical TRUE        
#>  2 534816  F_CANDD_ALBC Clinical TRUE        
#>  3 904485  B_STRPT_ANGN ICU      TRUE        
#>  4 A26548  B_STPHY_CONS ICU      TRUE        
#>  5 AB0003  B_ESCHR_COLI Clinical TRUE        
#>  6 B52127  B_ESCHR_COLI ICU      TRUE        
#>  7 E1C9D4  B_STPHY_CONS Clinical TRUE        
#>  8 612042  B_ESCHR_COLI ICU      TRUE        
#>  9 A31059  B_STRPT_MTNS Clinical TRUE        
#> 10 D39422  B_KLBSL_PNMN Clinical TRUE        
#> # … with 190 more rows
# }