These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days
. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode()
function returns the index number of the episode per group, while the is_new_episode()
function returns TRUE
for every new get_episode()
index, and is thus equal to !duplicated(get_episode(...))
.
Arguments
- x
vector of dates (class
Date
orPOSIXt
), will be sorted internally to determine episodes- episode_days
required episode length in days, can also be less than a day or
Inf
, see Details- ...
ignored, only in place to allow future extensions
Details
The functions get_episode()
and is_new_episode()
differ in this way when setting episode_days
to 365:
person_id | date | get_episode() | is_new_episode() |
A | 2019-01-01 | 1 | TRUE |
A | 2019-03-01 | 1 | FALSE |
A | 2021-01-01 | 2 | TRUE |
B | 2008-01-01 | 1 | TRUE |
B | 2008-01-01 | 1 | FALSE |
C | 2020-01-01 | 1 | TRUE |
Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days
days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days
days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.
The first_isolate()
function is a wrapper around the is_new_episode()
function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.
The dplyr
package is not required for these functions to work, but these episode functions do support variable grouping and work conveniently inside dplyr
verbs such as filter()
, mutate()
and summarise()
.
Examples
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 100), ]
get_episode(df$date, episode_days = 60) # indices
#> [1] 35 25 44 41 29 17 16 4 49 30 12 28 37 49 43 47 11 44 35 3 1 19 11 18 41
#> [26] 45 23 1 3 33 5 26 48 49 2 48 10 39 14 10 28 8 4 27 9 42 18 16 47 47
#> [51] 7 24 8 9 36 31 7 34 18 39 32 29 10 23 2 13 44 22 15 40 47 17 38 48 15
#> [76] 16 21 21 21 20 15 41 6 49 24 31 6 7 30 4 20 46 19 32 1 39 48 3 45 27
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [13] TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE
#> [25] FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
#> [37] TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
#> [49] FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE
#> [61] TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
#> [73] TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
#> [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
#> [97] FALSE FALSE FALSE FALSE
# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 3 × 46
#> date patient age gender ward mo PEN OXA FLC AMX
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
#> 1 2002-11-16 762305 87 F Clinical B_PROTS_MRBL R NA NA NA
#> 2 2003-01-08 783073 83 M Clinical B_STPHY_CONS R NA S NA
#> 3 2002-11-18 956065 89 F Clinical B_ESCHR_COLI R NA NA NA
#> # … with 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>,
#> # FEP <sir>, CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>,
#> # GEN <sir>, TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>,
#> # NIT <sir>, FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>,
#> # TEC <sir>, TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>,
#> # AZM <sir>, IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>,
#> # MUP <sir>, RIF <sir>
# the functions also work for less than a day, e.g. to include one per hour:
get_episode(
c(
Sys.time(),
Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2
# \donttest{
if (require("dplyr")) {
# is_new_episode() can also be used in dplyr verbs to determine patient
# episodes based on any (combination of) grouping variables:
df %>%
mutate(condition = sample(
x = c("A", "B", "C"),
size = 100,
replace = TRUE
)) %>%
group_by(patient, condition) %>%
mutate(new_episode = is_new_episode(date, 365)) %>%
select(patient, date, condition, new_episode) %>%
arrange(patient, condition, date)
}
#> # A tibble: 100 × 4
#> # Groups: patient, condition [96]
#> patient date condition new_episode
#> <chr> <date> <chr> <lgl>
#> 1 023456 2002-02-05 C TRUE
#> 2 023456 2011-04-25 C TRUE
#> 3 032343 2003-06-09 A TRUE
#> 4 047634 2004-06-28 A TRUE
#> 5 067927 2002-01-13 B TRUE
#> 6 078381 2014-07-17 A TRUE
#> 7 0C0688 2014-09-05 B TRUE
#> 8 0DBF93 2015-12-03 B TRUE
#> 9 0E2483 2007-08-10 A TRUE
#> 10 0E2483 2008-07-22 A FALSE
#> # … with 90 more rows
if (require("dplyr")) {
df %>%
group_by(ward, patient) %>%
transmute(date,
patient,
new_index = get_episode(date, 60),
new_logical = is_new_episode(date, 60)
) %>%
arrange(patient, ward, date)
}
#> # A tibble: 100 × 5
#> # Groups: ward, patient [96]
#> ward date patient new_index new_logical
#> <chr> <date> <chr> <int> <lgl>
#> 1 Clinical 2002-02-05 023456 2 TRUE
#> 2 Clinical 2011-04-25 023456 1 TRUE
#> 3 Clinical 2003-06-09 032343 1 TRUE
#> 4 Clinical 2004-06-28 047634 1 TRUE
#> 5 ICU 2002-01-13 067927 1 TRUE
#> 6 ICU 2014-07-17 078381 1 TRUE
#> 7 Clinical 2014-09-05 0C0688 1 TRUE
#> 8 ICU 2015-12-03 0DBF93 1 TRUE
#> 9 Clinical 2008-07-22 0E2483 1 TRUE
#> 10 ICU 2007-08-10 0E2483 1 TRUE
#> # … with 90 more rows
if (require("dplyr")) {
df %>%
group_by(ward) %>%
summarise(
n_patients = n_distinct(patient),
n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
)
}
#> # A tibble: 3 × 5
#> ward n_patients n_episodes_365 n_episodes_60 n_episodes_30
#> <chr> <int> <int> <int> <int>
#> 1 Clinical 61 14 40 47
#> 2 ICU 31 10 24 26
#> 3 Outpatient 4 4 4 4
# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
if (require("dplyr")) {
x <- df %>%
filter_first_isolate(
include_unknown = TRUE,
method = "episode-based"
)
y <- df %>%
group_by(patient, mo) %>%
filter(is_new_episode(date, 365)) %>%
ungroup()
identical(x, y)
}
#> [1] TRUE
# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
if (require("dplyr")) {
df %>%
group_by(patient, mo, ward) %>%
mutate(flag_episode = is_new_episode(date, 365)) %>%
select(group_vars(.), flag_episode)
}
#> # A tibble: 100 × 4
#> # Groups: patient, mo, ward [100]
#> patient mo ward flag_episode
#> <chr> <mo> <chr> <lgl>
#> 1 187841 B_STPHY_CONS Clinical TRUE
#> 2 AB0003 B_ESCHR_COLI Clinical TRUE
#> 3 0DBF93 B_STPHY_AURS ICU TRUE
#> 4 0C0688 B_ESCHR_COLI Clinical TRUE
#> 5 B61944 B_STPHY_CONS ICU TRUE
#> 6 E31163 B_STPHY_CONS ICU TRUE
#> 7 868305 B_STPHY_AURS Clinical TRUE
#> 8 032343 B_STPHY_CONS Clinical TRUE
#> 9 C13048 B_ESCHR_COLI Clinical TRUE
#> 10 023456 B_PROTS_MRBL Clinical TRUE
#> # … with 90 more rows
# }