Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns TRUE for every new get_episode() index, and is thus equal to !duplicated(get_episode(...)).

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these episode functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 100), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 28 20 43 16 15  4 24 19 32 23 19 49 25 15 21  2 14 20 20 19 12  7 32  2 47
#>  [26] 36 41 43 40 37 11  8 16 40  6  3 43 38 41 34 40 27 36 46 20  7 44 18 10  9
#>  [51] 44 25 30 44 11  7 38 29 42 11 39  1  8 22  8 12  4 35 13 11 46 41  3 29 13
#>  [76] 34 33  5 34 24  1 37 44 36 42  1  6 46 31 24 48  5 42 17 31 44 45 17 26 35
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
#>  [13]  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
#>  [25]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
#>  [37] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE
#>  [49]  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
#>  [61]  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
#>  [73] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [85] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
#>  [97]  TRUE FALSE  TRUE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#>   date       patient   age gender ward  mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr> <mo>         <sir> <sir> <sir> <sir>
#> 1 2002-11-21 450741     77 F      ICU   B_STPHY_EPDR R     NA    S     NA   
#> 2 2002-11-21 450741     77 F      ICU   B_STPHY_EPDR R     NA    S     NA   
#> # … with 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>,
#> #   FEP <sir>, CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>,
#> #   GEN <sir>, TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>,
#> #   NIT <sir>, FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>,
#> #   TEC <sir>, TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>,
#> #   AZM <sir>, IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>,
#> #   MUP <sir>, RIF <sir>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(Sys.time(),
              Sys.time() + 60 * 60),
            episode_days = 1 / 24)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> Error in mutate(., condition = sample(x = c("A", "B", "C"), size = 200,     replace = TRUE)):  In argument: `condition = sample(x = c("A", "B", "C"), size = 200,
#>   replace = TRUE)`.
#> Caused by error:
#> ! `condition` must be size 100 or 1, not 200.

if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    ) %>% 
    arrange(patient, ward, date)
}
#> # A tibble: 100 × 5
#> # Groups:   ward, patient [94]
#>    ward     date       patient new_index new_logical
#>    <chr>    <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical 2002-02-27 066895          1 TRUE       
#>  2 ICU      2002-02-05 067927          1 TRUE       
#>  3 ICU      2014-06-28 078381          1 TRUE       
#>  4 Clinical 2007-08-10 122506          1 TRUE       
#>  5 ICU      2004-09-06 15D386          1 TRUE       
#>  6 Clinical 2004-04-14 161373          1 TRUE       
#>  7 Clinical 2008-11-14 183220          1 TRUE       
#>  8 ICU      2007-02-24 218912          1 TRUE       
#>  9 Clinical 2013-07-22 255339          1 TRUE       
#> 10 ICU      2005-09-01 277241          1 TRUE       
#> # … with 90 more rows

if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical           49             12            34            41
#> 2 ICU                42             14            29            35
#> 3 Outpatient          3              2             3             3

# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
if (require("dplyr")) {
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> [1] TRUE

# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
if (require("dplyr")) {
  
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 100 × 4
#> # Groups:   patient, mo, ward [96]
#>    patient mo            ward       flag_episode
#>    <chr>   <mo>          <chr>      <lgl>       
#>  1 805883  B_ESCHR_COLI  Clinical   TRUE        
#>  2 F08866  B_ESCHR_COLI  Clinical   TRUE        
#>  3 A79917  B_ESCHR_COLI  Clinical   TRUE        
#>  4 650870  B_ENTRBC_CLOC ICU        TRUE        
#>  5 534816  B_ENTRC_FCLS  Clinical   TRUE        
#>  6 6BC362  B_STRPT_PNMN  ICU        TRUE        
#>  7 E58549  B_KLBSL_PNMN  Clinical   TRUE        
#>  8 183220  B_STPHY_CONS  Clinical   TRUE        
#>  9 B40844  B_ESCHR_COLI  Clinical   TRUE        
#> 10 650870  B_ESCHR_COLI  Outpatient TRUE        
#> # … with 90 more rows
# }