Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 50 55 22  2  7 13 47 45 36 28 21 45 31 46  9 22 42  6 25 28 48 35 10 11 47
#>  [26] 23 58 59 44 57 34 40 26 33 45 51 39  7 20 38 35  6 18 32  1  1 46 10  9 48
#>  [51] 37 41  5 36  8 58 40 50 58 59 57  9 35 59 51 16 48 57 33  2 39 35 58 20  7
#>  [76] 20  4  5 18  2 26 25  8 20  7 33 40 19 28 44 49 28 38 15 27 57 22 43 27 32
#> [101] 25 36 32 26 38 27 16  3 32 56 10 51  8  9 40 30  6 29 51  2 53  8 53 33  9
#> [126] 28 18  6 19 50 10 51 15 53 28 38 20 38 42 12 49 33 24 58 36 26 52  5 24 10
#> [151] 55 37 11 47 22 44 12 57  6 16 21 54 45 36 15 49 12  4 53 38  6 60 13 47 38
#> [176] 36 30 14 18 17 10 23 10 56 55 18  1 19 19 24 14 34 45 50 54  2 27 12 15 45
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
#>  [13]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [25] FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
#>  [37]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [49] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
#>  [61] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE
#>  [73] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
#>  [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
#>  [97] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
#> [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
#> [121] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
#> [133] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
#> [145]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE
#> [157] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
#> [169] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
#> [181]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE
#> [193] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 1 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-06-19 402950     53 F      Clinical B_STPHY_HMNS R     NA    S     NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 324415  2015-10-03 B         FALSE      
#>  2 671620  2016-12-04 A         TRUE       
#>  3 403631  2007-07-31 A         FALSE      
#>  4 F30196  2002-04-14 A         FALSE      
#>  5 A73011  2003-08-13 C         FALSE      
#>  6 F63168  2005-02-25 A         FALSE      
#>  7 C34429  2014-12-15 A         FALSE      
#>  8 658640  2014-05-30 B         FALSE      
#>  9 687590  2011-10-29 A         FALSE      
#> 10 408807  2009-05-07 C         TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [179]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 ICU        2015-10-03 324415          1 TRUE       
#>  2 Clinical   2016-12-04 671620          1 TRUE       
#>  3 Clinical   2007-07-31 403631          1 TRUE       
#>  4 Outpatient 2002-04-14 F30196          1 TRUE       
#>  5 Clinical   2003-08-13 A73011          1 TRUE       
#>  6 Clinical   2005-02-25 F63168          1 TRUE       
#>  7 Clinical   2014-12-15 C34429          1 TRUE       
#>  8 Clinical   2014-05-30 658640          1 TRUE       
#>  9 Clinical   2011-10-29 687590          1 TRUE       
#> 10 Clinical   2009-05-07 408807          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          118             14            52            75
#> 2 ICU                51             12            34            45
#> 3 Outpatient         10              6            11            11
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [188]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 324415  B_PROTS_MRBL ICU        TRUE        
#>  2 671620  B_ESCHR_COLI Clinical   TRUE        
#>  3 403631  B_ESCHR_COLI Clinical   TRUE        
#>  4 F30196  B_STRPT_GRPB Outpatient TRUE        
#>  5 A73011  B_STPHY_CONS Clinical   TRUE        
#>  6 F63168  B_STRPT_EQUI Clinical   TRUE        
#>  7 C34429  B_PROTS_MRBL Clinical   TRUE        
#>  8 658640  B_STPHY_AURS Clinical   TRUE        
#>  9 687590  B_STPHY_CONS Clinical   TRUE        
#> 10 408807  B_STPHY_CONS Clinical   TRUE        
#> # … with 190 more rows
# }