% Generated by roxygen2: do not edit by hand % Please edit documentation in R/first_isolate.R \name{first_isolate} \alias{first_isolate} \title{Determine first (weighted) isolates} \source{ Methodology of this function is based on: "M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition", 2014, Clinical and Laboratory Standards Institute. \url{https://clsi.org/standards/products/microbiology/documents/m39/}. } \usage{ first_isolate(tbl, col_date, col_patient_id, col_bactid = NA, col_testcode = NA, col_specimen = NA, col_icu = NA, col_keyantibiotics = NA, episode_days = 365, testcodes_exclude = "", icu_exclude = FALSE, filter_specimen = NA, output_logical = TRUE, type = "keyantibiotics", ignore_I = TRUE, points_threshold = 2, info = TRUE, col_genus = NA, col_species = NA) } \arguments{ \item{tbl}{a \code{data.frame} containing isolates.} \item{col_date}{column name of the result date (or date that is was received on the lab)} \item{col_patient_id}{column name of the unique IDs of the patients} \item{col_bactid}{column name of the unique IDs of the microorganisms: \code{bactid}'s. If this column has another class than \code{"bactid"}, values will be coerced using \code{\link{as.bactid}}.} \item{col_testcode}{column name of the test codes. Use \code{col_testcode = NA} to \strong{not} exclude certain test codes (like test codes for screening). In that case \code{testcodes_exclude} will be ignored. Supports tidyverse-like quotation.} \item{col_specimen}{column name of the specimen type or group} \item{col_icu}{column name of the logicals (\code{TRUE}/\code{FALSE}) whether a ward or department is an Intensive Care Unit (ICU)} \item{col_keyantibiotics}{column name of the key antibiotics to determine first \emph{weighted} isolates, see \code{\link{key_antibiotics}}. Supports tidyverse-like quotation.} \item{episode_days}{episode in days after which a genus/species combination will be determined as 'first isolate' again} \item{testcodes_exclude}{character vector with test codes that should be excluded (case-insensitive)} \item{icu_exclude}{logical whether ICU isolates should be excluded} \item{filter_specimen}{specimen group or type that should be excluded} \item{output_logical}{return output as \code{logical} (will else be the values \code{0} or \code{1})} \item{type}{type to determine weighed isolates; can be \code{"keyantibiotics"} or \code{"points"}, see Details} \item{ignore_I}{logical to determine whether antibiotic interpretations with \code{"I"} will be ignored when \code{type = "keyantibiotics"}, see Details} \item{points_threshold}{points until the comparison of key antibiotics will lead to inclusion of an isolate when \code{type = "points"}, see Details} \item{info}{print progress} \item{col_genus}{(deprecated, use \code{col_bactid} instead) column name of the genus of the microorganisms} \item{col_species}{(deprecated, use \code{col_bactid} instead) column name of the species of the microorganisms} } \value{ A vector to add to table, see Examples. } \description{ Determine first (weighted) isolates of all microorganisms of every patient per episode and (if needed) per specimen type. } \details{ \strong{WHY THIS IS SO IMPORTANT} \cr To conduct an analysis of antimicrobial resistance, you should only include the first isolate of every patient per episode \href{https://www.ncbi.nlm.nih.gov/pubmed/17304462}{[1]}. If you would not do this, you could easily get an overestimate or underestimate of the resistance of an antibiotic. Imagine that a patient was admitted with an MRSA and that it was found in 5 different blood cultures the following week. The resistance percentage of oxacillin of all \emph{S. aureus} isolates would be overestimated, because you included this MRSA more than once. It would be \href{https://en.wikipedia.org/wiki/Selection_bias}{selection bias}. } \section{Key antibiotics}{ There are two ways to determine whether isolates can be included as first \emph{weighted} isolates which will give generally the same results: \cr \strong{1. Using} \code{type = "keyantibiotics"} \strong{and parameter} \code{ignore_I} \cr Any difference from S to R (or vice versa) will (re)select an isolate as a first weighted isolate. With \code{ignore_I = FALSE}, also differences from I to S|R (or vice versa) will lead to this. This is a reliable method and 30-35 times faster than method 2. \cr \strong{2. Using} \code{type = "points"} \strong{and parameter} \code{points_threshold} \cr A difference from I to S|R (or vice versa) means 0.5 points, a difference from S to R (or vice versa) means 1 point. When the sum of points exceeds \code{points_threshold}, an isolate will be (re)selected as a first weighted isolate. } \examples{ # septic_patients is a dataset available in the AMR package ?septic_patients my_patients <- septic_patients library(dplyr) my_patients$first_isolate <- my_patients \%>\% first_isolate(col_date = "date", col_patient_id = "patient_id", col_bactid = "bactid") # Now let's see if first isolates matter: A <- my_patients \%>\% group_by(hospital_id) \%>\% summarise(count = n_rsi(gent), # gentamicin resistance = resistance(gent)) B <- my_patients \%>\% filter(first_isolate == TRUE) \%>\% group_by(hospital_id) \%>\% summarise(count = n_rsi(gent), # gentamicin resistance = resistance(gent)) # Have a look at A and B. B is more reliable because every isolate is # counted once. Gentamicin resitance in hospital D seems to be 5\% # higher than originally thought. ## OTHER EXAMPLES: \dontrun{ # set key antibiotics to a new variable tbl$keyab <- key_antibiotics(tbl) tbl$first_isolate <- first_isolate(tbl) tbl$first_isolate_weighed <- first_isolate(tbl, col_keyantibiotics = 'keyab') tbl$first_blood_isolate <- first_isolate(tbl, filter_specimen = 'Blood') tbl$first_blood_isolate_weighed <- first_isolate(tbl, filter_specimen = 'Blood', col_keyantibiotics = 'keyab') tbl$first_urine_isolate <- first_isolate(tbl, filter_specimen = 'Urine') tbl$first_urine_isolate_weighed <- first_isolate(tbl, filter_specimen = 'Urine', col_keyantibiotics = 'keyab') tbl$first_resp_isolate <- first_isolate(tbl, filter_specimen = 'Respiratory') tbl$first_resp_isolate_weighed <- first_isolate(tbl, filter_specimen = 'Respiratory', col_keyantibiotics = 'keyab') } } \seealso{ \code{\link{key_antibiotics}} } \keyword{first} \keyword{isolate} \keyword{isolates}