% Generated by roxygen2: do not edit by hand % Please edit documentation in R/resistance.R \name{resistance} \alias{resistance} \alias{susceptibility} \alias{n_rsi} \alias{rsi} \title{Calculate resistance of isolates} \usage{ resistance(ab, include_I = TRUE, minimum = 30, as_percent = FALSE) susceptibility(ab1, ab2 = NULL, include_I = FALSE, minimum = 30, as_percent = FALSE) n_rsi(ab1, ab2 = NULL) rsi(ab1, ab2 = NA, interpretation = "IR", minimum = 30, as_percent = FALSE, info = FALSE, warning = TRUE) } \arguments{ \item{ab, ab1, ab2}{vector of antibiotic interpretations, they will be transformed internally with \code{\link{as.rsi}}} \item{include_I}{logical to indicate whether antimicrobial interpretations of "I" should be included} \item{minimum}{minimal amount of available isolates. Any number lower than \code{minimum} will return \code{NA}.} \item{as_percent}{logical to indicate whether the output must be returned as percent (text), will else be a double} \item{interpretation}{antimicrobial interpretation} \item{info}{\emph{DEPRECATED} calculate the amount of available isolates and print it, like \code{n = 423}} \item{warning}{\emph{DEPRECATED} show a warning when the available amount of isolates is below \code{minimum}} } \value{ Double or, when \code{as_percent = TRUE}, a character. } \description{ These functions can be used to calculate the (co-)resistance of microbial isolates (i.e. percentage S, SI, I, IR or R). All functions can be used in \code{dplyr}s \code{\link[dplyr]{summarise}} and support grouped variables, see \emph{Examples}. } \details{ \strong{Remember that you should filter your table to let it contain only first isolates!} Use \code{\link{first_isolate}} to determine them in your data set. The functions \code{resistance}, \code{susceptibility} and \code{n_rsi} calculate using hybrid evaluation (i.e. using C++), which makes these functions 25-30 times faster than the old \code{rsi} function. This function is still available for backwards compatibility but is deprecated. \if{html}{ \cr To calculate the probability (\emph{p}) of susceptibility of one antibiotic, we use this formula: \out{
}\figure{mono_therapy.png}\out{
} To calculate the probability (\emph{p}) of susceptibility of more antibiotics (i.e. combination therapy), we need to check whether one of them has a susceptible result (as numerator) and count all cases where all antibiotics were tested (as denominator). \cr \cr For two antibiotics: \out{
}\figure{combi_therapy_2.png}\out{
} \cr Theoretically for three antibiotics: \out{
}\figure{combi_therapy_3.png}\out{
} } } \examples{ library(dplyr) septic_patients \%>\% group_by(hospital_id) \%>\% summarise(p = susceptibility(cipr), n = n_rsi(cipr)) # n_rsi works like n_distinct in dplyr septic_patients \%>\% group_by(hospital_id) \%>\% summarise(cipro_p = susceptibility(cipr, as_percent = TRUE), cipro_n = n_rsi(cipr), genta_p = susceptibility(gent, as_percent = TRUE), genta_n = n_rsi(gent), combination_p = susceptibility(cipr, gent, as_percent = TRUE), combination_n = n_rsi(cipr, gent)) # Calculate resistance resistance(septic_patients$amox) rsi(septic_patients$amox, interpretation = "IR") # deprecated # Or susceptibility susceptibility(septic_patients$amox) rsi(septic_patients$amox, interpretation = "S") # deprecated # Calculate co-resistance between amoxicillin/clav acid and gentamicin, # so we can see that combination therapy does a lot more than mono therapy: susceptibility(septic_patients$amcl) # p = 67.8\% n_rsi(septic_patients$amcl) # n = 1641 susceptibility(septic_patients$gent) # p = 69.1\% n_rsi(septic_patients$gent) # n = 1863 with(septic_patients, susceptibility(amcl, gent)) # p = 90.6\% with(septic_patients, n_rsi(amcl, gent)) # n = 1580 \dontrun{ # calculate current empiric combination therapy of Helicobacter gastritis: my_table \%>\% filter(first_isolate == TRUE, genus == "Helicobacter") \%>\% summarise(p = susceptibility(amox, metr), # amoxicillin with metronidazole n = n_rsi(amox, metr)) # How fast is this hybrid evaluation in C++ compared to R? # In other words: how is the speed improvement of the new `resistance` compared to old `rsi`? library(microbenchmark) df <- septic_patients \%>\% group_by(hospital_id, bactid) # 317 groups with sizes 1 to 167 microbenchmark(old_IR = df \%>\% summarise(p = rsi(amox, minimum = 0, interpretation = "IR")), new_IR = df \%>\% summarise(p = resistance(amox, minimum = 0)), old_S = df \%>\% summarise(p = rsi(amox, minimum = 0, interpretation = "S")), new_S = df \%>\% summarise(p = susceptibility(amox, minimum = 0)), times = 5, unit = "s") # Unit: seconds # expr min lq mean median uq max neval # old_IR 1.95600230 1.96096857 1.97981537 1.96823318 2.00645711 2.00741568 5 # new_IR 0.06872808 0.06984932 0.07162866 0.06987306 0.07050094 0.07919192 5 # old_S 1.68893579 1.69024888 1.72461867 1.69785934 1.70428796 1.84176137 5 # new_S 0.06737037 0.06838167 0.07431906 0.07745364 0.07827224 0.08011738 5 # The old function took roughly 2 seconds, the new ones take 0.07 seconds. } } \keyword{antibiotics} \keyword{isolate} \keyword{isolates} \keyword{resistance} \keyword{rsi_df} \keyword{susceptibility}