<!-- Generated by pkgdown: do not edit by hand --> <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>PCA biplot with ggplot2 — ggplot_pca • AMR (for R)</title> <!-- favicons --> <link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png"> <link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png"> <link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png" /> <link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png" /> <link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png" /> <link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png" /> <!-- jquery --> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script> <!-- Bootstrap --> <link href="https://cdnjs.cloudflare.com/ajax/libs/bootswatch/3.4.0/flatly/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous" /> <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script> <!-- bootstrap-toc --> <link rel="stylesheet" href="../bootstrap-toc.css"> <script src="../bootstrap-toc.js"></script> <!-- Font Awesome icons --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" /> <!-- clipboard.js --> <script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script> <!-- headroom.js --> <script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../pkgdown.js"></script> <link href="../extra.css" rel="stylesheet"> <script src="../extra.js"></script> <meta property="og:title" content="PCA biplot with ggplot2 — ggplot_pca" /> <meta property="og:description" content="Produces a ggplot2 variant of a so-called biplot for PCA (principal component analysis), but is more flexible and more appealing than the base R biplot() function." /> <meta property="og:image" content="https://msberends.github.io/AMR/logo.png" /> <!-- mathjax --> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script> <!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> </head> <body data-spy="scroll" data-target="#toc"> <div class="container template-reference-topic"> <header> <div class="navbar navbar-default navbar-fixed-top" role="navigation"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">AMR (for R)</a> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.4.0.9030</span> </span> </div> <div id="navbar" class="navbar-collapse collapse"> <ul class="nav navbar-nav"> <li> <a href="../index.html"> <span class="fa fa-home"></span> Home </a> </li> <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> <span class="fa fa-question-circle"></span> How to <span class="caret"></span> </a> <ul class="dropdown-menu" role="menu"> <li> <a href="../articles/AMR.html"> <span class="fa fa-directions"></span> Conduct AMR analysis </a> </li> <li> <a href="../articles/resistance_predict.html"> <span class="fa fa-dice"></span> Predict antimicrobial resistance </a> </li> <li> <a href="../articles/datasets.html"> <span class="fa fa-database"></span> Data sets for download / own use </a> </li> <li> <a href="../articles/PCA.html"> <span class="fa fa-compress"></span> Conduct principal component analysis for AMR </a> </li> <li> <a href="../articles/MDR.html"> <span class="fa fa-skull-crossbones"></span> Determine multi-drug resistance (MDR) </a> </li> <li> <a href="../articles/WHONET.html"> <span class="fa fa-globe-americas"></span> Work with WHONET data </a> </li> <li> <a href="../articles/SPSS.html"> <span class="fa fa-file-upload"></span> Import data from SPSS/SAS/Stata </a> </li> <li> <a href="../articles/EUCAST.html"> <span class="fa fa-exchange-alt"></span> Apply EUCAST rules </a> </li> <li> <a href="../reference/mo_property.html"> <span class="fa fa-bug"></span> Get properties of a microorganism </a> </li> <li> <a href="../reference/ab_property.html"> <span class="fa fa-capsules"></span> Get properties of an antibiotic </a> </li> <li> <a href="../articles/benchmarks.html"> <span class="fa fa-shipping-fast"></span> Other: benchmarks </a> </li> </ul> </li> <li> <a href="../reference/index.html"> <span class="fa fa-book-open"></span> Manual </a> </li> <li> <a href="../authors.html"> <span class="fa fa-users"></span> Authors </a> </li> <li> <a href="../news/index.html"> <span class="far fa far fa-newspaper"></span> Changelog </a> </li> </ul> <ul class="nav navbar-nav navbar-right"> <li> <a href="https://github.com/msberends/AMR"> <span class="fab fa fab fa-github"></span> Source Code </a> </li> <li> <a href="../survey.html"> <span class="fa fa-clipboard-list"></span> Survey </a> </li> </ul> </div><!--/.nav-collapse --> </div><!--/.container --> </div><!--/.navbar --> </header> <div class="row"> <div class="col-md-9 contents"> <div class="page-header"> <h1>PCA biplot with <code>ggplot2</code></h1> <small class="dont-index">Source: <a href='https://github.com/msberends/AMR/blob/master/R/ggplot_pca.R'><code>R/ggplot_pca.R</code></a></small> <div class="hidden name"><code>ggplot_pca.Rd</code></div> </div> <div class="ref-description"> <p>Produces a <code>ggplot2</code> variant of a so-called <a href='https://en.wikipedia.org/wiki/Biplot'>biplot</a> for PCA (principal component analysis), but is more flexible and more appealing than the base <span style="R">R</span> <code><a href='https://rdrr.io/r/stats/biplot.html'>biplot()</a></code> function.</p> </div> <pre class="usage"><span class='fu'>ggplot_pca</span><span class='op'>(</span> <span class='va'>x</span>, choices <span class='op'>=</span> <span class='fl'>1</span><span class='op'>:</span><span class='fl'>2</span>, scale <span class='op'>=</span> <span class='fl'>1</span>, pc.biplot <span class='op'>=</span> <span class='cn'>TRUE</span>, labels <span class='op'>=</span> <span class='cn'>NULL</span>, labels_textsize <span class='op'>=</span> <span class='fl'>3</span>, labels_text_placement <span class='op'>=</span> <span class='fl'>1.5</span>, groups <span class='op'>=</span> <span class='cn'>NULL</span>, ellipse <span class='op'>=</span> <span class='cn'>TRUE</span>, ellipse_prob <span class='op'>=</span> <span class='fl'>0.68</span>, ellipse_size <span class='op'>=</span> <span class='fl'>0.5</span>, ellipse_alpha <span class='op'>=</span> <span class='fl'>0.5</span>, points_size <span class='op'>=</span> <span class='fl'>2</span>, points_alpha <span class='op'>=</span> <span class='fl'>0.25</span>, arrows <span class='op'>=</span> <span class='cn'>TRUE</span>, arrows_colour <span class='op'>=</span> <span class='st'>"darkblue"</span>, arrows_size <span class='op'>=</span> <span class='fl'>0.5</span>, arrows_textsize <span class='op'>=</span> <span class='fl'>3</span>, arrows_textangled <span class='op'>=</span> <span class='cn'>TRUE</span>, arrows_alpha <span class='op'>=</span> <span class='fl'>0.75</span>, base_textsize <span class='op'>=</span> <span class='fl'>10</span>, <span class='va'>...</span> <span class='op'>)</span></pre> <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2> <table class="ref-arguments"> <colgroup><col class="name" /><col class="desc" /></colgroup> <tr> <th>x</th> <td><p>an object returned by <code><a href='pca.html'>pca()</a></code>, <code><a href='https://rdrr.io/r/stats/prcomp.html'>prcomp()</a></code> or <code><a href='https://rdrr.io/r/stats/princomp.html'>princomp()</a></code></p></td> </tr> <tr> <th>choices</th> <td><p>length 2 vector specifying the components to plot. Only the default is a biplot in the strict sense.</p></td> </tr> <tr> <th>scale</th> <td><p>The variables are scaled by <code>lambda ^ scale</code> and the observations are scaled by <code>lambda ^ (1-scale)</code> where <code>lambda</code> are the singular values as computed by <code><a href='https://rdrr.io/r/stats/princomp.html'>princomp</a></code>. Normally <code>0 <= scale <= 1</code>, and a warning will be issued if the specified <code>scale</code> is outside this range.</p></td> </tr> <tr> <th>pc.biplot</th> <td><p>If true, use what Gabriel (1971) refers to as a "principal component biplot", with <code>lambda = 1</code> and observations scaled up by sqrt(n) and variables scaled down by sqrt(n). Then inner products between variables approximate covariances and distances between observations approximate Mahalanobis distance.</p></td> </tr> <tr> <th>labels</th> <td><p>an optional vector of labels for the observations. If set, the labels will be placed below their respective points. When using the <code><a href='pca.html'>pca()</a></code> function as input for <code>x</code>, this will be determined automatically based on the attribute <code>non_numeric_cols</code>, see <code><a href='pca.html'>pca()</a></code>.</p></td> </tr> <tr> <th>labels_textsize</th> <td><p>the size of the text used for the labels</p></td> </tr> <tr> <th>labels_text_placement</th> <td><p>adjustment factor the placement of the variable names (<code>>=1</code> means further away from the arrow head)</p></td> </tr> <tr> <th>groups</th> <td><p>an optional vector of groups for the labels, with the same length as <code>labels</code>. If set, the points and labels will be coloured according to these groups. When using the <code><a href='pca.html'>pca()</a></code> function as input for <code>x</code>, this will be determined automatically based on the attribute <code>non_numeric_cols</code>, see <code><a href='pca.html'>pca()</a></code>.</p></td> </tr> <tr> <th>ellipse</th> <td><p>a logical to indicate whether a normal data ellipse should be drawn for each group (set with <code>groups</code>)</p></td> </tr> <tr> <th>ellipse_prob</th> <td><p>statistical size of the ellipse in normal probability</p></td> </tr> <tr> <th>ellipse_size</th> <td><p>the size of the ellipse line</p></td> </tr> <tr> <th>ellipse_alpha</th> <td><p>the alpha (transparency) of the ellipse line</p></td> </tr> <tr> <th>points_size</th> <td><p>the size of the points</p></td> </tr> <tr> <th>points_alpha</th> <td><p>the alpha (transparency) of the points</p></td> </tr> <tr> <th>arrows</th> <td><p>a logical to indicate whether arrows should be drawn</p></td> </tr> <tr> <th>arrows_colour</th> <td><p>the colour of the arrow and their text</p></td> </tr> <tr> <th>arrows_size</th> <td><p>the size (thickness) of the arrow lines</p></td> </tr> <tr> <th>arrows_textsize</th> <td><p>the size of the text at the end of the arrows</p></td> </tr> <tr> <th>arrows_textangled</th> <td><p>a logical whether the text at the end of the arrows should be angled</p></td> </tr> <tr> <th>arrows_alpha</th> <td><p>the alpha (transparency) of the arrows and their text</p></td> </tr> <tr> <th>base_textsize</th> <td><p>the text size for all plot elements except the labels and arrows</p></td> </tr> <tr> <th>...</th> <td><p>Parameters passed on to functions</p></td> </tr> </table> <h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2> <p>The <code>ggplot_pca()</code> function is based on the <code>ggbiplot()</code> function from the <code>ggbiplot</code> package by Vince Vu, as found on GitHub: <a href='https://github.com/vqv/ggbiplot'>https://github.com/vqv/ggbiplot</a> (retrieved: 2 March 2020, their latest commit: <a href='https://github.com/vqv/ggbiplot/commit/7325e880485bea4c07465a0304c470608fffb5d9'><code>7325e88</code></a>; 12 February 2015).</p> <p>As per their GPL-2 licence that demands documentation of code changes, the changes made based on the source code were:</p><ol> <li><p>Rewritten code to remove the dependency on packages <code>plyr</code>, <code>scales</code> and <code>grid</code></p></li> <li><p>Parametrised more options, like arrow and ellipse settings</p></li> <li><p>Hardened all input possibilities by defining the exact type of user input for every parameter</p></li> <li><p>Added total amount of explained variance as a caption in the plot</p></li> <li><p>Cleaned all syntax based on the <code>lintr</code> package, fixed grammatical errors and added integrity checks</p></li> <li><p>Updated documentation</p></li> </ol> <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2> <p>The colours for labels and points can be changed by adding another scale layer for colour, like <code><a href='https://ggplot2.tidyverse.org/reference/scale_viridis.html'>scale_colour_viridis_d()</a></code> or <code><a href='https://ggplot2.tidyverse.org/reference/scale_brewer.html'>scale_colour_brewer()</a></code>.</p> <h2 class="hasAnchor" id="maturing-lifecycle"><a class="anchor" href="#maturing-lifecycle"></a>Maturing lifecycle</h2> <p><img src='figures/lifecycle_maturing.svg' style=margin-bottom:5px /> <br /> The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>maturing</strong>. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome <a href='https://github.com/msberends/AMR/issues'>to suggest changes at our repository</a> or <a href='AMR.html'>write us an email (see section 'Contact Us')</a>.</p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> <pre class="examples"><span class='co'># `example_isolates` is a dataset available in the AMR package.</span> <span class='co'># See ?example_isolates.</span> <span class='co'># See ?pca for more info about Principal Component Analysis (PCA).</span> <span class='kw'>if</span> <span class='op'>(</span><span class='kw'><a href='https://rdrr.io/r/base/library.html'>require</a></span><span class='op'>(</span><span class='st'><a href='https://dplyr.tidyverse.org'>"dplyr"</a></span><span class='op'>)</span><span class='op'>)</span> <span class='op'>{</span> <span class='va'>pca_model</span> <span class='op'><-</span> <span class='va'>example_isolates</span> <span class='op'>%>%</span> <span class='fu'><a href='https://dplyr.tidyverse.org/reference/filter.html'>filter</a></span><span class='op'>(</span><span class='fu'><a href='mo_property.html'>mo_genus</a></span><span class='op'>(</span><span class='va'>mo</span><span class='op'>)</span> <span class='op'>==</span> <span class='st'>"Staphylococcus"</span><span class='op'>)</span> <span class='op'>%>%</span> <span class='fu'><a href='https://dplyr.tidyverse.org/reference/group_by.html'>group_by</a></span><span class='op'>(</span>species <span class='op'>=</span> <span class='fu'><a href='mo_property.html'>mo_shortname</a></span><span class='op'>(</span><span class='va'>mo</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>%>%</span> <span class='fu'><a href='https://dplyr.tidyverse.org/reference/summarise_all.html'>summarise_if</a></span> <span class='op'>(</span><span class='va'>is.rsi</span>, <span class='va'>resistance</span><span class='op'>)</span> <span class='op'>%>%</span> <span class='fu'><a href='pca.html'>pca</a></span><span class='op'>(</span><span class='va'>FLC</span>, <span class='va'>AMC</span>, <span class='va'>CXM</span>, <span class='va'>GEN</span>, <span class='va'>TOB</span>, <span class='va'>TMP</span>, <span class='va'>SXT</span>, <span class='va'>CIP</span>, <span class='va'>TEC</span>, <span class='va'>TCY</span>, <span class='va'>ERY</span><span class='op'>)</span> <span class='co'># old (base R)</span> <span class='fu'><a href='https://rdrr.io/r/stats/biplot.html'>biplot</a></span><span class='op'>(</span><span class='va'>pca_model</span><span class='op'>)</span> <span class='co'># new </span> <span class='fu'>ggplot_pca</span><span class='op'>(</span><span class='va'>pca_model</span><span class='op'>)</span> <span class='kw'>if</span> <span class='op'>(</span><span class='kw'><a href='https://rdrr.io/r/base/library.html'>require</a></span><span class='op'>(</span><span class='st'><a href='http://ggplot2.tidyverse.org'>"ggplot2"</a></span><span class='op'>)</span><span class='op'>)</span> <span class='op'>{</span> <span class='fu'>ggplot_pca</span><span class='op'>(</span><span class='va'>pca_model</span><span class='op'>)</span> <span class='op'>+</span> <span class='fu'><a href='https://ggplot2.tidyverse.org/reference/scale_viridis.html'>scale_colour_viridis_d</a></span><span class='op'>(</span><span class='op'>)</span> <span class='op'>+</span> <span class='fu'><a href='https://ggplot2.tidyverse.org/reference/labs.html'>labs</a></span><span class='op'>(</span>title <span class='op'>=</span> <span class='st'>"Title here"</span><span class='op'>)</span> <span class='op'>}</span> <span class='op'>}</span> </pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> <nav id="toc" data-toggle="toc" class="sticky-top"> <h2 data-toc-skip>Contents</h2> </nav> </div> </div> <footer> <div class="copyright"> <p>Developed by <a href='https://www.rug.nl/staff/m.s.berends/'>Matthijs S. Berends</a>, <a href='https://www.rug.nl/staff/c.f.luz/'>Christian F. Luz</a>, <a href='https://www.rug.nl/staff/a.w.friedrich/'>Alexander W. Friedrich</a>, <a href='https://www.rug.nl/staff/b.sinha/'>Bhanu N. M. Sinha</a>, <a href='https://www.rug.nl/staff/c.j.albers/'>Casper J. Albers</a>, <a href='https://www.rug.nl/staff/c.glasner/'>Corinna Glasner</a>.</p> </div> <div class="pkgdown"> <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p> </div> </footer> </div> </body> </html>