Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns TRUE for every new get_episode() index, and is thus equal to !duplicated(get_episode(...)).

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

Details

The functions get_episode() and is_new_episode() differ in this way when setting episode_days to 365:

person_iddateget_episode()is_new_episode()
A2019-01-011TRUE
A2019-03-011FALSE
A2021-01-012TRUE
B2008-01-011TRUE
B2008-01-011FALSE
C2020-01-011TRUE

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these episode functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 100), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1]  6  3 12  3 12  9 27 30 21  7 43 27  2 25 14  5 15  6 37 29 18 40 17 13  8
#>  [26] 20 25 39 41 10  8 45 29  1 29  8 12 30 26  1 31 13 25 10  4 25 40 24 21 39
#>  [51] 45 28 31 39 38 36 11  6 36 47 18 28 25  5 11  5 33 35 23 22  2 47  9 32  3
#>  [76] 26 44  8 34 38 39 16  6 14 18 29 41 19 33 44 30 36 15 31 12 46 42 24 16 45
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
#>  [13]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
#>  [25]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
#>  [37] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
#>  [49] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
#>  [61] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
#>  [73] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
#>  [85] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
#>  [97]  TRUE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 3 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <sir> <sir> <sir> <sir>
#> 1 2002-12-02 374815     77 F      Clinical B_STPHY_CONS S     NA    S     NA   
#> 2 2002-12-28 E26415     70 M      ICU      B_STPHY_CONS S     NA    S     NA   
#> 3 2003-01-06 894506     83 M      ICU      B_STRPT_PNMN S     NA    NA    S    
#> # … with 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>,
#> #   FEP <sir>, CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>,
#> #   GEN <sir>, TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>,
#> #   NIT <sir>, FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>,
#> #   TEC <sir>, TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>,
#> #   AZM <sir>, IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>,
#> #   MUP <sir>, RIF <sir>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(
  c(
    Sys.time(),
    Sys.time() + 60 * 60
  ),
  episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 100,
      replace = TRUE
    )) %>%
    group_by(patient, condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode) %>%
    arrange(patient, condition, date)
}
#> # A tibble: 100 × 4
#> # Groups:   patient, condition [100]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 011307  2011-09-20 A         TRUE       
#>  2 047634  2004-06-28 A         TRUE       
#>  3 077922  2009-08-24 A         TRUE       
#>  4 092034  2006-06-12 A         TRUE       
#>  5 0DBB93  2003-10-01 A         TRUE       
#>  6 0DBF93  2015-12-03 C         TRUE       
#>  7 0E2483  2007-05-29 B         TRUE       
#>  8 105248  2005-06-16 B         TRUE       
#>  9 122506  2007-08-11 A         TRUE       
#> 10 141061  2014-10-22 C         TRUE       
#> # … with 90 more rows

if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    ) %>%
    arrange(patient, ward, date)
}
#> # A tibble: 100 × 5
#> # Groups:   ward, patient [97]
#>    ward     date       patient new_index new_logical
#>    <chr>    <date>     <chr>       <int> <lgl>      
#>  1 Clinical 2011-09-20 011307          1 TRUE       
#>  2 Clinical 2004-06-28 047634          1 TRUE       
#>  3 Clinical 2009-08-24 077922          1 TRUE       
#>  4 ICU      2006-06-12 092034          1 TRUE       
#>  5 Clinical 2003-10-01 0DBB93          1 TRUE       
#>  6 ICU      2015-12-03 0DBF93          1 TRUE       
#>  7 Clinical 2007-05-29 0E2483          1 TRUE       
#>  8 Clinical 2005-06-16 105248          1 TRUE       
#>  9 Clinical 2007-08-11 122506          1 TRUE       
#> 10 Clinical 2014-10-22 141061          1 TRUE       
#> # … with 90 more rows

if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical           66             13            39            47
#> 2 ICU                27              9            22            25
#> 3 Outpatient          4              3             4             4

# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
if (require("dplyr")) {
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> [1] TRUE

# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
if (require("dplyr")) {
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 100 × 4
#> # Groups:   patient, mo, ward [99]
#>    patient mo           ward     flag_episode
#>    <chr>   <mo>         <chr>    <lgl>       
#>  1 B70881  B_KLBSL_OXYT Clinical TRUE        
#>  2 374815  B_STPHY_CONS Clinical TRUE        
#>  3 578848  B_STPHY_CONS Clinical TRUE        
#>  4 E26415  B_STPHY_CONS ICU      TRUE        
#>  5 54890C  B_ESCHR_COLI Clinical TRUE        
#>  6 827322  B_KLBSL_OXYT Clinical TRUE        
#>  7 704554  B_STPHY_CONS ICU      TRUE        
#>  8 207804  B_STRPT_PNMN Clinical TRUE        
#>  9 F54287  B_STRPT_ANGN Clinical TRUE        
#> 10 869231  B_KLBSL_PNMN Clinical TRUE        
#> # … with 90 more rows
# }