Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 54  9  4  2 23  7 29 14 21 37 18 58 61 29 16 13 27 63 35 56  9  8 52 60 12
#>  [26] 14 19 62 16 61 48 34 46 59 48 31  2  5 30 25  9  3 56 53  4 31 32  6 23 49
#>  [51] 55 57 32  3 64 63 14  4 30 65 61 62 14 58 48 17 11 13  1 52 21 51 61 56 52
#>  [76] 21 60 17 49 37 43 42 48 63 21 43 63  1 62 11 58 64 58 49 11 10 21 56 48 63
#> [101] 53 20  4 23  6 55 30 42  6  6 39 37 28  8 33 42 39 47 55  7 43  6 43  1 60
#> [126] 43 24 56 19 48 32 16  4 38 28 29 14 44 53 39 23 20 51 13 53  3 45 60 20 24
#> [151] 35 36 36 29 41 33 10 46 51  1 40 41 17 22  8 26 52 21 27 31  1 52 64 38 64
#> [176] 63 53 16 34  8 50 57 12 10 59 64  6 10 15 43 65 25  9 48  9 32 17 15  4 43
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
#>  [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#>  [25] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
#>  [37] FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE
#>  [49]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
#>  [61]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
#>  [73] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
#>  [85] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
#>  [97]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> [109]  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
#> [121] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
#> [133] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> [145] FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE
#> [157] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE
#> [169]  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
#> [181]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
#> [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 3 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-07-15 C42193     84 M      ICU      B_STPHY_HMNS R     NA    R     R    
#> 2 2002-07-28 F54261     69 M      Clinical B_STPHY_CONS R     NA    S     NA   
#> 3 2002-07-23 F35553     51 M      ICU      B_STPHY_AURS R     NA    S     R    
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 E99D61  2015-04-07 C         FALSE      
#>  2 394107  2004-01-16 C         FALSE      
#>  3 F35553  2002-09-23 B         FALSE      
#>  4 F41248  2002-04-04 A         FALSE      
#>  5 5B78D5  2007-02-21 A         FALSE      
#>  6 032343  2003-06-09 B         FALSE      
#>  7 D43890  2008-11-28 C         TRUE       
#>  8 F41D7B  2005-01-12 A         FALSE      
#>  9 94BB11  2006-08-14 B         FALSE      
#> 10 D82303  2010-12-11 B         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [182]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 ICU        2015-04-07 E99D61          1 TRUE       
#>  2 ICU        2004-01-16 394107          1 TRUE       
#>  3 ICU        2002-09-23 F35553          2 TRUE       
#>  4 Clinical   2002-04-04 F41248          1 TRUE       
#>  5 Clinical   2007-02-21 5B78D5          1 TRUE       
#>  6 Clinical   2003-06-09 032343          1 TRUE       
#>  7 Outpatient 2008-11-28 D43890          1 TRUE       
#>  8 ICU        2005-01-12 F41D7B          1 TRUE       
#>  9 Clinical   2006-08-14 94BB11          1 TRUE       
#> 10 ICU        2010-12-11 D82303          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          105             14            52            67
#> 2 ICU                64             12            38            46
#> 3 Outpatient         13              7            11            12
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [188]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 E99D61  B_STPHY_EPDR ICU        TRUE        
#>  2 394107  B_STPHY_CONS ICU        TRUE        
#>  3 F35553  B_STPHY_AURS ICU        FALSE       
#>  4 F41248  B_STPHY_AURS Clinical   TRUE        
#>  5 5B78D5  B_STPHY_AURS Clinical   TRUE        
#>  6 032343  B_STPHY_CONS Clinical   TRUE        
#>  7 D43890    UNKNOWN    Outpatient TRUE        
#>  8 F41D7B  B_STRPT_PNMN ICU        TRUE        
#>  9 94BB11  B_ESCHR_COLI Clinical   TRUE        
#> 10 D82303  B_ESCHR_COLI ICU        TRUE        
#> # … with 190 more rows
# }