Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1]  4 47 50 30 20 54 24 18 16 33 25 50 23 32 37 61 20 11 27 36 17 55 13 59  4
#>  [26] 12 30 60 46 17  2 39 24  3  7 60 11 58 43 43 13 16 62 47 56 16 61  5 21 46
#>  [51] 54 14  8  6 10 40  6 32 46 23 58  4 21 24 13 52 11 23 22 11 32 14 34 57 27
#>  [76] 19 59 28 39 36 30  2 33 15 25 56 19  1 20 60 40 60 17 17  8 21 44 42 10 15
#> [101]  8 36 20 19 52  4 60 19 30 41 37  2 47 10 15 35 40 45 12 37 11  9 60  1 34
#> [126] 46  7 48  1  9  6  6 13 15 26 48 45 38 23 31 23 46  5  8 11 17 12 16 55 60
#> [151] 32  7 12 59 15 26 56 28 40 57 11 42 40  6 20 13  7 15 53 29 45 49 14 33 23
#> [176] 52 51 19 54 10 16 58 50 54  8 37 48 16 51 49 20 31 53 52 60 22 44 29 32 57
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE
#>  [13] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
#>  [25] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
#>  [37] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
#>  [49] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
#>  [61] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
#>  [73] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [85] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
#>  [97]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
#> [109] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
#> [121] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
#> [133]  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> [145] FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE
#> [157] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
#> [169]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#> [181] FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
#> [193] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 1 × 46
#>   date       patient   age gender ward  mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr> <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-07-30 218912     76 F      ICU   B_ESCHR_COLI R     NA    NA    NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 304347  2002-11-04 B         FALSE      
#>  2 919B60  2013-12-31 A         TRUE       
#>  3 715822  2015-01-10 B         TRUE       
#>  4 501361  2008-10-31 A         TRUE       
#>  5 E19253  2006-08-23 B         TRUE       
#>  6 D36589  2016-02-18 C         FALSE      
#>  7 ED4982  2007-07-13 C         FALSE      
#>  8 E59875  2006-03-25 C         FALSE      
#>  9 240662  2005-10-26 B         FALSE      
#> 10 EC9741  2009-06-18 B         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [178]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical   2002-11-04 304347          1 TRUE       
#>  2 Clinical   2013-12-31 919B60          1 TRUE       
#>  3 Clinical   2015-01-10 715822          1 TRUE       
#>  4 Clinical   2008-10-31 501361          1 TRUE       
#>  5 Clinical   2006-08-23 E19253          1 TRUE       
#>  6 ICU        2016-02-18 D36589          1 TRUE       
#>  7 ICU        2007-07-13 ED4982          1 TRUE       
#>  8 ICU        2006-03-25 E59875          1 TRUE       
#>  9 Clinical   2005-10-26 240662          1 TRUE       
#> 10 Outpatient 2009-06-18 EC9741          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          111             14            49            69
#> 2 ICU                57             12            39            46
#> 3 Outpatient         10              7            10            10
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [187]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 304347  B_STRPT_PNMN Clinical   TRUE        
#>  2 919B60  B_STPHY_AURS Clinical   TRUE        
#>  3 715822  B_STPHY_EPDR Clinical   TRUE        
#>  4 501361  B_ESCHR_COLI Clinical   TRUE        
#>  5 E19253  B_STPHY_CONS Clinical   TRUE        
#>  6 D36589  B_STPHY_EPDR ICU        TRUE        
#>  7 ED4982  B_ESCHR_COLI ICU        TRUE        
#>  8 E59875  B_STPHY_EPDR ICU        TRUE        
#>  9 240662  B_STRPT_PNMN Clinical   TRUE        
#> 10 EC9741  B_ESCHR_COLI Outpatient TRUE        
#> # … with 190 more rows
# }