# ==================================================================== # # TITLE: # # AMR: An R Package for Working with Antimicrobial Resistance Data # # # # SOURCE CODE: # # https://github.com/msberends/AMR # # # # PLEASE CITE THIS SOFTWARE AS: # # Berends MS, Luz CF, Friedrich AW, et al. (2022). # # AMR: An R Package for Working with Antimicrobial Resistance Data. # # Journal of Statistical Software, 104(3), 1-31. # # https://doi.org/10.18637/jss.v104.i03 # # # # Developed at the University of Groningen and the University Medical # # Center Groningen in The Netherlands, in collaboration with many # # colleagues from around the world, see our website. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # #' Calculate Antimicrobial Resistance #' #' @description These functions can be used to calculate the (co-)resistance or susceptibility of microbial isolates (i.e. percentage of S, SI, I, IR or R). All functions support quasiquotation with pipes, can be used in `summarise()` from the `dplyr` package and also support grouped variables, see *Examples*. #' #' [resistance()] should be used to calculate resistance, [susceptibility()] should be used to calculate susceptibility.\cr #' @param ... one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with [as.sir()] if needed. Use multiple columns to calculate (the lack of) co-resistance: the probability where one of two drugs have a resistant or susceptible result. See *Examples*. #' @param minimum the minimum allowed number of available (tested) isolates. Any isolate count lower than `minimum` will return `NA` with a warning. The default number of `30` isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as best practice, see *Source*. #' @param as_percent a [logical] to indicate whether the output must be returned as a hundred fold with % sign (a character). A value of `0.123456` will then be returned as `"12.3%"`. #' @param only_all_tested (for combination therapies, i.e. using more than one variable for `...`): a [logical] to indicate that isolates must be tested for all antibiotics, see section *Combination Therapy* below #' @param data a [data.frame] containing columns with class [`sir`] (see [as.sir()]) #' @param translate_ab a column name of the [antibiotics] data set to translate the antibiotic abbreviations to, using [ab_property()] #' @inheritParams ab_property #' @param combine_SI a [logical] to indicate whether all values of S, SDD, and I must be merged into one, so the output only consists of S+SDD+I vs. R (susceptible vs. resistant) - the default is `TRUE` #' @param ab_result antibiotic results to test against, must be one or more values of "S", "SDD", "I", or "R" #' @param confidence_level the confidence level for the returned confidence interval. For the calculation, the number of S or SI isolates, and R isolates are compared with the total number of available isolates with R, S, or I by using [binom.test()], i.e., the Clopper-Pearson method. #' @param side the side of the confidence interval to return. The default is `"both"` for a length 2 vector, but can also be (abbreviated as) `"min"`/`"left"`/`"lower"`/`"less"` or `"max"`/`"right"`/`"higher"`/`"greater"`. #' @param collapse a [logical] to indicate whether the output values should be 'collapsed', i.e. be merged together into one value, or a character value to use for collapsing #' @inheritSection as.sir Interpretation of SIR #' @details #' **Remember that you should filter your data to let it contain only first isolates!** This is needed to exclude duplicates and to reduce selection bias. Use [first_isolate()] to determine them in your data set with one of the four available algorithms. #' #' The function [resistance()] is equal to the function [proportion_R()]. The function [susceptibility()] is equal to the function [proportion_SI()]. Since AMR v3.0, [proportion_SI()] and [proportion_I()] include dose-dependent susceptibility ('SDD'). #' #' Use [sir_confidence_interval()] to calculate the confidence interval, which relies on [binom.test()], i.e., the Clopper-Pearson method. This function returns a vector of length 2 at default for antimicrobial *resistance*. Change the `side` argument to "left"/"min" or "right"/"max" to return a single value, and change the `ab_result` argument to e.g. `c("S", "I")` to test for antimicrobial *susceptibility*, see Examples. #' #' These functions are not meant to count isolates, but to calculate the proportion of resistance/susceptibility. Use the [`count_*()`][AMR::count()] functions to count isolates. The function [susceptibility()] is essentially equal to [count_susceptible()]` / `[count_all()]. *Low counts can influence the outcome - the `proportion_*()` functions may camouflage this, since they only return the proportion (albeit dependent on the `minimum` argument).* #' #' The function [proportion_df()] takes any variable from `data` that has an [`sir`] class (created with [as.sir()]) and calculates the proportions S, I, and R. It also supports grouped variables. The function [sir_df()] works exactly like [proportion_df()], but adds the number of isolates. #' @section Combination Therapy: #' When using more than one variable for `...` (= combination therapy), use `only_all_tested` to only count isolates that are tested for all antibiotics/variables that you test them for. See this example for two antibiotics, Drug A and Drug B, about how [susceptibility()] works to calculate the %SI: #' #' #' ``` #' -------------------------------------------------------------------- #' only_all_tested = FALSE only_all_tested = TRUE #' ----------------------- ----------------------- #' Drug A Drug B include as include as include as include as #' numerator denominator numerator denominator #' -------- -------- ---------- ----------- ---------- ----------- #' S or I S or I X X X X #' R S or I X X X X #' S or I X X - - #' S or I R X X X X #' R R - X - X #' R - - - - #' S or I X X - - #' R - - - - #' - - - - #' -------------------------------------------------------------------- #' ``` #' #' Please note that, in combination therapies, for `only_all_tested = TRUE` applies that: #' #' ``` #' count_S() + count_I() + count_R() = count_all() #' proportion_S() + proportion_I() + proportion_R() = 1 #' ``` #' #' and that, in combination therapies, for `only_all_tested = FALSE` applies that: #' #' ``` #' count_S() + count_I() + count_R() >= count_all() #' proportion_S() + proportion_I() + proportion_R() >= 1 #' ``` #' #' Using `only_all_tested` has no impact when only using one antibiotic as input. #' @source **M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 5th Edition**, 2022, *Clinical and Laboratory Standards Institute (CLSI)*. . #' @seealso [AMR::count()] to count resistant and susceptible isolates. #' @return A [double] or, when `as_percent = TRUE`, a [character]. #' @rdname proportion #' @aliases portion #' @name proportion #' @export #' @examples #' # example_isolates is a data set available in the AMR package. #' # run ?example_isolates for more info. #' example_isolates #' #' #' # base R ------------------------------------------------------------ #' # determines %R #' resistance(example_isolates$AMX) #' sir_confidence_interval(example_isolates$AMX) #' sir_confidence_interval(example_isolates$AMX, #' confidence_level = 0.975 #' ) #' sir_confidence_interval(example_isolates$AMX, #' confidence_level = 0.975, #' collapse = ", " #' ) #' #' # determines %S+I: #' susceptibility(example_isolates$AMX) #' sir_confidence_interval(example_isolates$AMX, #' ab_result = c("S", "I") #' ) #' #' # be more specific #' proportion_S(example_isolates$AMX) #' proportion_SI(example_isolates$AMX) #' proportion_I(example_isolates$AMX) #' proportion_IR(example_isolates$AMX) #' proportion_R(example_isolates$AMX) #' #' # dplyr ------------------------------------------------------------- #' \donttest{ #' if (require("dplyr")) { #' example_isolates %>% #' group_by(ward) %>% #' summarise( #' r = resistance(CIP), #' n = n_sir(CIP) #' ) # n_sir works like n_distinct in dplyr, see ?n_sir #' } #' if (require("dplyr")) { #' example_isolates %>% #' group_by(ward) %>% #' summarise( #' cipro_R = resistance(CIP), #' ci_min = sir_confidence_interval(CIP, side = "min"), #' ci_max = sir_confidence_interval(CIP, side = "max"), #' ) #' } #' if (require("dplyr")) { #' # scoped dplyr verbs with antibiotic selectors #' # (you could also use across() of course) #' example_isolates %>% #' group_by(ward) %>% #' summarise_at( #' c(aminoglycosides(), carbapenems()), #' resistance #' ) #' } #' if (require("dplyr")) { #' example_isolates %>% #' group_by(ward) %>% #' summarise( #' R = resistance(CIP, as_percent = TRUE), #' SI = susceptibility(CIP, as_percent = TRUE), #' n1 = count_all(CIP), # the actual total; sum of all three #' n2 = n_sir(CIP), # same - analogous to n_distinct #' total = n() #' ) # NOT the number of tested isolates! #' #' # Calculate co-resistance between amoxicillin/clav acid and gentamicin, #' # so we can see that combination therapy does a lot more than mono therapy: #' example_isolates %>% susceptibility(AMC) # %SI = 76.3% #' example_isolates %>% count_all(AMC) # n = 1879 #' #' example_isolates %>% susceptibility(GEN) # %SI = 75.4% #' example_isolates %>% count_all(GEN) # n = 1855 #' #' example_isolates %>% susceptibility(AMC, GEN) # %SI = 94.1% #' example_isolates %>% count_all(AMC, GEN) # n = 1939 #' #' #' # See Details on how `only_all_tested` works. Example: #' example_isolates %>% #' summarise( #' numerator = count_susceptible(AMC, GEN), #' denominator = count_all(AMC, GEN), #' proportion = susceptibility(AMC, GEN) #' ) #' #' example_isolates %>% #' summarise( #' numerator = count_susceptible(AMC, GEN, only_all_tested = TRUE), #' denominator = count_all(AMC, GEN, only_all_tested = TRUE), #' proportion = susceptibility(AMC, GEN, only_all_tested = TRUE) #' ) #' #' #' example_isolates %>% #' group_by(ward) %>% #' summarise( #' cipro_p = susceptibility(CIP, as_percent = TRUE), #' cipro_n = count_all(CIP), #' genta_p = susceptibility(GEN, as_percent = TRUE), #' genta_n = count_all(GEN), #' combination_p = susceptibility(CIP, GEN, as_percent = TRUE), #' combination_n = count_all(CIP, GEN) #' ) #' #' # Get proportions S/I/R immediately of all sir columns #' example_isolates %>% #' select(AMX, CIP) %>% #' proportion_df(translate = FALSE) #' #' # It also supports grouping variables #' # (use sir_df to also include the count) #' example_isolates %>% #' select(ward, AMX, CIP) %>% #' group_by(ward) %>% #' sir_df(translate = FALSE) #' } #' } resistance <- function(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE) { tryCatch( sir_calc(..., ab_result = "R", minimum = minimum, as_percent = as_percent, only_all_tested = only_all_tested, only_count = FALSE ), error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5) ) } #' @rdname proportion #' @export susceptibility <- function(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE) { tryCatch( sir_calc(..., ab_result = c("S", "SDD", "I"), minimum = minimum, as_percent = as_percent, only_all_tested = only_all_tested, only_count = FALSE ), error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5) ) } #' @rdname proportion #' @export sir_confidence_interval <- function(..., ab_result = "R", minimum = 30, as_percent = FALSE, only_all_tested = FALSE, confidence_level = 0.95, side = "both", collapse = FALSE) { meet_criteria(ab_result, allow_class = c("character", "sir"), has_length = c(1:5), is_in = c("S", "SDD", "I", "R", "NI")) meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE) meet_criteria(as_percent, allow_class = "logical", has_length = 1) meet_criteria(only_all_tested, allow_class = "logical", has_length = 1) meet_criteria(confidence_level, allow_class = "numeric", is_positive = TRUE, has_length = 1) meet_criteria(side, allow_class = "character", has_length = 1, is_in = c("both", "b", "left", "l", "lower", "lowest", "less", "min", "right", "r", "higher", "highest", "greater", "g", "max")) meet_criteria(collapse, allow_class = c("logical", "character"), has_length = 1) x <- tryCatch( sir_calc(..., ab_result = ab_result, only_all_tested = only_all_tested, only_count = TRUE ), error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5) ) n <- tryCatch( sir_calc(..., ab_result = c("S", "SDD", "I", "R", "NI"), only_all_tested = only_all_tested, only_count = TRUE ), error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5) ) # this applies the Clopper-Pearson method if (x == 0) { out <- c(NA_real_, NA_real_) } else { out <- stats::binom.test(x = x, n = n, conf.level = confidence_level)$conf.int } out <- set_clean_class(out, "numeric") if (side %in% c("left", "l", "lower", "lowest", "less", "min")) { out <- out[1] } else if (side %in% c("right", "r", "higher", "highest", "greater", "g", "max")) { out <- out[2] } if (isTRUE(as_percent)) { out <- trimws(percentage(out, digits = 1)) } if (!isFALSE(collapse) && length(out) > 1) { if (is.numeric(out)) { out <- round(out, digits = 3) } out[is.na(out)] <- "??" out <- paste(out, collapse = ifelse(isTRUE(collapse), "-", collapse)) } if (n < minimum) { warning_("Introducing NA: ", ifelse(n == 0, "no", paste("only", n)), " results available for `sir_confidence_interval()` (`minimum` = ", minimum, ").", call = FALSE ) if (is.character(out)) { return(NA_character_) } else { return(NA_real_) } } out } #' @rdname proportion #' @export proportion_R <- function(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE) { tryCatch( sir_calc(..., ab_result = "R", minimum = minimum, as_percent = as_percent, only_all_tested = only_all_tested, only_count = FALSE ), error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5) ) } #' @rdname proportion #' @export proportion_IR <- function(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE) { if (message_not_thrown_before("proportion_IR", entire_session = TRUE)) { message_("Note that `proportion_IR()` will also include dose-dependent susceptibility, 'SDD'. This note will be shown once for this session.", as_note = FALSE) } tryCatch( sir_calc(..., ab_result = c("I", "SDD", "R"), minimum = minimum, as_percent = as_percent, only_all_tested = only_all_tested, only_count = FALSE ), error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5) ) } #' @rdname proportion #' @export proportion_I <- function(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE) { if (message_not_thrown_before("proportion_I", entire_session = TRUE)) { message_("Note that `proportion_I()` will also include dose-dependent susceptibility, 'SDD'. This note will be shown once for this session.", as_note = FALSE) } tryCatch( sir_calc(..., ab_result = c("I", "SDD"), minimum = minimum, as_percent = as_percent, only_all_tested = only_all_tested, only_count = FALSE ), error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5) ) } #' @rdname proportion #' @export proportion_SI <- function(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE) { if (message_not_thrown_before("proportion_SI", entire_session = TRUE)) { message_("Note that `proportion_SI()` will also include dose-dependent susceptibility, 'SDD'. This note will be shown once for this session.", as_note = FALSE) } tryCatch( sir_calc(..., ab_result = c("S", "I", "SDD"), minimum = minimum, as_percent = as_percent, only_all_tested = only_all_tested, only_count = FALSE ), error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5) ) } #' @rdname proportion #' @export proportion_S <- function(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE) { tryCatch( sir_calc(..., ab_result = "S", minimum = minimum, as_percent = as_percent, only_all_tested = only_all_tested, only_count = FALSE ), error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5) ) } #' @rdname proportion #' @export proportion_df <- function(data, translate_ab = "name", language = get_AMR_locale(), minimum = 30, as_percent = FALSE, combine_SI = TRUE, confidence_level = 0.95) { tryCatch( sir_calc_df( type = "proportion", data = data, translate_ab = translate_ab, language = language, minimum = minimum, as_percent = as_percent, combine_SI = combine_SI, confidence_level = confidence_level ), error = function(e) stop_(gsub("in sir_calc_df(): ", "", e$message, fixed = TRUE), call = -5) ) }