# ==================================================================== # # TITLE: # # AMR: An R Package for Working with Antimicrobial Resistance Data # # # # SOURCE CODE: # # https://github.com/msberends/AMR # # # # PLEASE CITE THIS SOFTWARE AS: # # Berends MS, Luz CF, Friedrich AW, et al. (2022). # # AMR: An R Package for Working with Antimicrobial Resistance Data. # # Journal of Statistical Software, 104(3), 1-31. # # https://doi.org/10.18637/jss.v104.i03 # # # # Developed at the University of Groningen and the University Medical # # Center Groningen in The Netherlands, in collaboration with many # # colleagues from around the world, see our website. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://amr-for-r.org # # ==================================================================== # test_that("tidymodels.R", { skip_on_cran() if (AMR:::pkg_is_available("recipes", also_load = TRUE) && AMR:::pkg_is_available("dplyr", also_load = TRUE)) { # SIR df <- tibble( sir1 = as.sir(c("S", "I", "R", "S", "R")), sir2 = as.sir(c("I", "R", "S", "R", "I")), not_sir = c("S", "R", "R", "S", "I") ) rec <- recipe(~., data = df) %>% step_sir_numeric(all_sir()) prepped <- prep(rec) baked <- bake(prepped, new_data = df) expect_inherits(baked$sir1, "numeric") expect_inherits(baked$sir2, "numeric") expect_equal(baked$not_sir, as.factor(df$not_sir)) # MIC df <- tibble( mic_col1 = as.mic(c("<=0.002", "0.002", "0.004", "0.016", "32")), mic_col2 = as.mic(c("0.5", "1", "2", "4", "8")), non_mic = c(1, 2, 3, 4, 5) ) rec <- recipe(~., data = df) %>% step_mic_log2(all_mic()) prepped <- prep(rec) baked <- bake(prepped, new_data = df) expect_inherits(baked$mic_col1, "numeric") expect_inherits(baked$mic_col2, "numeric") expect_equal(baked$non_mic, df$non_mic) expect_equal(baked$mic_col2, log2(as.numeric(df$mic_col2))) # disk df <- tibble( disk_col = as.disk(c(21, 22, 23, 24, 25)), non_disk = c(21, 22, 23, 24, 25) ) rec <- recipe(~., data = df) %>% step_rm(!all_disk()) prepped <- prep(rec) baked <- bake(prepped, new_data = df) expect_inherits(baked$disk_col, "disk") # steps check df <- tibble(x = as.mic(c("1", "2", "4"))) rec <- recipe(~x, data = df) %>% step_mic_log2(all_mic()) prepped <- prep(rec) tidy_df <- tidy(prepped, number = 1) expect_equal(unname(tidy_df$terms), "x") df <- tibble(x = as.sir(c("S", "I", "R"))) rec <- recipe(~x, data = df) %>% step_sir_numeric(all_sir()) prepped <- prep(rec) tidy_df <- tidy(prepped, number = 1) expect_equal(unname(tidy_df$terms), "x") } })