These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days
. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode()
function returns the index number of the episode per group, while the is_new_episode()
function returns values TRUE
/FALSE
to indicate whether an item in a vector is the start of a new episode.
Arguments
- x
vector of dates (class
Date
orPOSIXt
), will be sorted internally to determine episodes- episode_days
required episode length in days, can also be less than a day or
Inf
, see Details- ...
ignored, only in place to allow future extensions
Details
Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days
days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days
days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.
The first_isolate()
function is a wrapper around the is_new_episode()
function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.
The dplyr
package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr
verbs such as filter()
, mutate()
and summarise()
.
Examples
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]
get_episode(df$date, episode_days = 60) # indices
#> [1] 16 17 44 6 5 17 43 61 27 6 39 12 2 55 15 47 40 62 45 26 62 62 33 17 1
#> [26] 23 10 37 30 25 35 43 37 8 5 29 7 39 57 50 62 8 43 5 51 29 64 62 18 22
#> [51] 49 56 37 32 9 31 29 33 6 24 40 32 12 62 62 17 40 23 57 64 1 54 15 59 38
#> [76] 62 60 21 48 1 58 54 57 8 8 29 19 49 64 62 63 39 11 7 27 34 63 22 18 54
#> [101] 3 41 15 23 4 5 9 32 3 24 12 56 40 21 30 19 31 18 62 44 7 51 56 3 12
#> [126] 34 38 46 4 17 42 24 28 52 61 22 59 23 53 1 1 36 57 29 6 9 54 22 36 55
#> [151] 47 33 42 9 36 18 61 56 8 18 54 42 29 59 13 5 52 7 15 2 26 9 39 53 54
#> [176] 42 20 46 14 13 45 55 2 41 20 58 7 42 10 43 5 53 6 6 60 63 3 14 5 60
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#> [1] TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
#> [13] FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE
#> [25] FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE
#> [37] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
#> [49] FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
#> [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
#> [73] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
#> [85] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
#> [97] FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
#> [109] TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
#> [121] FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE
#> [133] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
#> [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [157] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
#> [169] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
#> [181] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> [193] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 4 × 46
#> date patient age gender ward mo PEN OXA FLC AMX
#> <date> <chr> <dbl> <chr> <chr> <mo> <rsi> <rsi> <rsi> <rsi>
#> 1 2002-06-23 798871 82 M Clinical B_ENTRC_FCLS NA NA NA NA
#> 2 2002-06-05 24D393 20 F Clinical B_ESCHR_COLI R NA NA NA
#> 3 2002-07-21 955940 82 F Clinical B_PSDMN_AERG R NA NA R
#> 4 2002-07-21 955940 82 F Clinical B_PSDMN_AERG R NA NA R
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> # FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> # GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> # NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> # TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> # AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> # MUP <rsi>, RIF <rsi>
# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
Sys.time(),
Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2
# \donttest{
if (require("dplyr")) {
# is_new_episode() can also be used in dplyr verbs to determine patient
# episodes based on any (combination of) grouping variables:
df %>%
mutate(condition = sample(
x = c("A", "B", "C"),
size = 200,
replace = TRUE
)) %>%
group_by(condition) %>%
mutate(new_episode = is_new_episode(date, 365)) %>%
select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups: condition [3]
#> patient date condition new_episode
#> <chr> <date> <chr> <lgl>
#> 1 2B1C03 2005-10-23 C FALSE
#> 2 5DF436 2006-01-04 A FALSE
#> 3 299616 2012-11-13 C FALSE
#> 4 328792 2003-05-28 B FALSE
#> 5 374815 2002-12-02 A FALSE
#> 6 968584 2005-12-29 A TRUE
#> 7 824233 2012-07-10 C FALSE
#> 8 E68281 2017-03-02 A FALSE
#> 9 195736 2008-08-28 C TRUE
#> 10 F35553 2003-04-07 B TRUE
#> # … with 190 more rows
if (require("dplyr")) {
df %>%
group_by(ward, patient) %>%
transmute(date,
patient,
new_index = get_episode(date, 60),
new_logical = is_new_episode(date, 60)
)
}
#> # A tibble: 200 × 5
#> # Groups: ward, patient [180]
#> ward date patient new_index new_logical
#> <chr> <date> <chr> <dbl> <lgl>
#> 1 Clinical 2005-10-23 2B1C03 1 TRUE
#> 2 ICU 2006-01-04 5DF436 1 TRUE
#> 3 Clinical 2012-11-13 299616 1 TRUE
#> 4 Clinical 2003-05-28 328792 1 TRUE
#> 5 Clinical 2002-12-02 374815 1 TRUE
#> 6 Clinical 2005-12-29 968584 1 TRUE
#> 7 Clinical 2012-07-10 824233 1 TRUE
#> 8 Clinical 2017-03-02 E68281 1 TRUE
#> 9 Outpatient 2008-08-28 195736 1 TRUE
#> 10 ICU 2003-04-07 F35553 2 TRUE
#> # … with 190 more rows
if (require("dplyr")) {
df %>%
group_by(ward) %>%
summarise(
n_patients = n_distinct(patient),
n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
)
}
#> # A tibble: 3 × 5
#> ward n_patients n_episodes_365 n_episodes_60 n_episodes_30
#> <chr> <int> <int> <int> <int>
#> 1 Clinical 123 14 55 73
#> 2 ICU 42 10 27 34
#> 3 Outpatient 15 7 12 13
if (require("dplyr")) {
# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
x <- df %>%
filter_first_isolate(
include_unknown = TRUE,
method = "episode-based"
)
y <- df %>%
group_by(patient, mo) %>%
filter(is_new_episode(date, 365)) %>%
ungroup()
identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {
# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
df %>%
group_by(patient, mo, ward) %>%
mutate(flag_episode = is_new_episode(date, 365)) %>%
select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups: patient, mo, ward [188]
#> patient mo ward flag_episode
#> <chr> <mo> <chr> <lgl>
#> 1 2B1C03 B_STPHY_CONS Clinical TRUE
#> 2 5DF436 B_ENTRC ICU TRUE
#> 3 299616 B_STPHY_AURS Clinical TRUE
#> 4 328792 B_STRPT_MITS Clinical TRUE
#> 5 374815 B_STPHY_CONS Clinical TRUE
#> 6 968584 B_PSDMN_AERG Clinical TRUE
#> 7 824233 B_STPHY_AURS Clinical TRUE
#> 8 E68281 B_STPHY_AURS Clinical TRUE
#> 9 195736 B_STPHY_AURS Outpatient TRUE
#> 10 F35553 B_STPHY_AURS ICU TRUE
#> # … with 190 more rows
# }