# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Analysis # # # # SOURCE # # https://gitlab.com/msberends/AMR # # # # LICENCE # # (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # # # This R package was created for academic research and was publicly # # released in the hope that it will be useful, but it comes WITHOUT # # ANY WARRANTY OR LIABILITY. # # Visit our website for more info: https://msberends.gitlab.io/AMR. # # ==================================================================== # #' Age in years of individuals #' #' Calculates age in years based on a reference date, which is the sytem date at default. #' @param x date(s), will be coerced with \code{\link{as.POSIXlt}} #' @param reference reference date(s) (defaults to today), will be coerced with \code{\link{as.POSIXlt}} and cannot be lower than \code{x} #' @return Integer (no decimals) #' @seealso \code{\link{age_groups}} to split age into age groups #' @importFrom dplyr if_else #' @inheritSection AMR Read more on our website! #' @export #' @examples #' df <- data.frame(birth_date = Sys.Date() - runif(100) * 25000) #' df$age <- age(df$birth_date) age <- function(x, reference = Sys.Date()) { if (length(x) != length(reference)) { if (length(reference) == 1) { reference <- rep(reference, length(x)) } else { stop("`x` and `reference` must be of same length, or `reference` must be of length 1.") } } x <- base::as.POSIXlt(x) reference <- base::as.POSIXlt(reference) # from https://stackoverflow.com/a/25450756/4575331 years_gap <- reference$year - x$year ages <- if_else(reference$mon < x$mon | (reference$mon == x$mon & reference$mday < x$mday), as.integer(years_gap - 1), as.integer(years_gap)) if (any(ages < 0, na.rm = TRUE)) { warning("NAs introduced for ages below 0.") ages[ages < 0] <- NA_integer_ } if (any(ages > 120, na.rm = TRUE)) { warning("Some ages are > 120.") } ages } #' Split ages into age groups #' #' Split ages into age groups defined by the \code{split} parameter. This allows for easier demographic (antimicrobial resistance) analysis. #' @param x age, e.g. calculated with \code{\link{age}} #' @param split_at values to split \code{x} at, defaults to age groups 0-11, 12-24, 26-54, 55-74 and 75+. See Details. #' @details To split ages, the input can be: #' \itemize{ #' \item{A numeric vector. A vector of e.g. \code{c(10, 20)} will split on 0-9, 10-19 and 20+. A value of only \code{50} will split on 0-49 and 50+. #' The default is to split on young children (0-11), youth (12-24), young adults (26-54), middle-aged adults (55-74) and elderly (75+).} #' \item{A character:} #' \itemize{ #' \item{\code{"children"}, equivalent of: \code{c(0, 1, 2, 4, 6, 13, 18)}. This will split on 0, 1, 2-3, 4-5, 6-12, 13-17 and 18+.} #' \item{\code{"elderly"} or \code{"seniors"}, equivalent of: \code{c(65, 75, 85)}. This will split on 0-64, 65-74, 75-84, 85+.} #' \item{\code{"fives"}, equivalent of: \code{1:20 * 5}. This will split on 0-4, 5-9, 10-14, ..., 90-94, 95-99, 100+.} #' \item{\code{"tens"}, equivalent of: \code{1:10 * 10}. This will split on 0-9, 10-19, 20-29, ... 80-89, 90-99, 100+.} #' } #' } #' @keywords age_group age #' @return Ordered \code{\link{factor}} #' @seealso \code{\link{age}} to determine ages based on one or more reference dates #' @export #' @inheritSection AMR Read more on our website! #' @examples #' ages <- c(3, 8, 16, 54, 31, 76, 101, 43, 21) #' #' # split into 0-49 and 50+ #' age_groups(ages, 50) #' #' # split into 0-19, 20-49 and 50+ #' age_groups(ages, c(20, 50)) #' #' # split into groups of ten years #' age_groups(ages, 1:10 * 10) #' age_groups(ages, split_at = "tens") #' #' # split into groups of five years #' age_groups(ages, 1:20 * 5) #' age_groups(ages, split_at = "fives") #' #' # split specifically for children #' age_groups(ages, "children") #' # same: #' age_groups(ages, c(1, 2, 4, 6, 13, 17)) #' #' # resistance of ciprofloxacine per age group #' library(dplyr) #' septic_patients %>% #' mutate(first_isolate = first_isolate(.)) %>% #' filter(first_isolate == TRUE, #' mo == as.mo("E. coli")) %>% #' group_by(age_group = age_groups(age)) %>% #' select(age_group, #' cipr) %>% #' ggplot_rsi(x = "age_group") age_groups <- function(x, split_at = c(12, 25, 55, 75)) { if (is.character(split_at)) { split_at <- split_at[1L] if (split_at %like% "^(child|kid)") { split_at <- c(0, 1, 2, 4, 6, 13, 18) } else if (split_at %like% "^(elder|senior)") { split_at <- c(65, 75, 85) } else if (split_at %like% "^five") { split_at <- 1:20 * 5 } else if (split_at %like% "^ten") { split_at <- 1:10 * 10 } } split_at <- as.integer(split_at) if (!is.numeric(x) | !is.numeric(split_at)) { stop("`x` and `split_at` must both be numeric.") } split_at <- sort(unique(split_at)) if (!split_at[1] == 0) { split_at <- c(0, split_at) } if (length(split_at) == 1) { # only 0 available stop("invalid value for `split_at`.") } # turn input values to 'split_at' indices y <- x labs <- split_at for (i in 1:length(split_at)) { y[x >= split_at[i]] <- i # create labels labs[i - 1] <- paste0(unique(c(split_at[i - 1], split_at[i] - 1)), collapse = "-") } # last category labs[length(labs)] <- paste0(split_at[length(split_at)], "+") factor(labs[y], levels = labs, ordered = TRUE) }