# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Data Analysis for R # # # # SOURCE # # https://github.com/msberends/AMR # # # # LICENCE # # (c) 2018-2022 Berends MS, Luz CF et al. # # Developed at the University of Groningen, the Netherlands, in # # collaboration with non-profit organisations Certe Medical # # Diagnostics & Advice, and University Medical Center Groningen. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # # Run this file to update the package using: # source("data-raw/_pre_commit_hook.R") library(dplyr, warn.conflicts = FALSE) devtools::load_all(quiet = TRUE) suppressMessages(set_AMR_locale("English")) old_globalenv <- ls(envir = globalenv()) # Save internal data to R/sysdata.rda ------------------------------------- # See 'data-raw/eucast_rules.tsv' for the EUCAST reference file EUCAST_RULES_DF <- utils::read.delim( file = "data-raw/eucast_rules.tsv", skip = 10, sep = "\t", stringsAsFactors = FALSE, header = TRUE, strip.white = TRUE, na = c(NA, "", NULL) ) %>% # take the order of the reference.rule_group column in the original data file mutate( reference.rule_group = factor(reference.rule_group, levels = unique(reference.rule_group), ordered = TRUE ), sorting_rule = ifelse(grepl("^Table", reference.rule, ignore.case = TRUE), 1, 2) ) %>% arrange( reference.rule_group, reference.version, sorting_rule, reference.rule ) %>% mutate(reference.rule_group = as.character(reference.rule_group)) %>% select(-sorting_rule) TRANSLATIONS <- utils::read.delim( file = "data-raw/translations.tsv", sep = "\t", stringsAsFactors = FALSE, header = TRUE, blank.lines.skip = TRUE, fill = TRUE, strip.white = TRUE, encoding = "UTF-8", fileEncoding = "UTF-8", na.strings = c(NA, "", NULL), allowEscapes = TRUE, # else "\\1" will be imported as "\\\\1" quote = "" ) LANGUAGES_SUPPORTED_NAMES <- c( list(en = list(exonym = "English", endonym = "English")), lapply( TRANSLATIONS[, which(nchar(colnames(TRANSLATIONS)) == 2), drop = FALSE], function(x) list(exonym = x[1], endonym = x[2]) ) ) LANGUAGES_SUPPORTED <- names(LANGUAGES_SUPPORTED_NAMES) # vectors of CoNS and CoPS, improves speed in as.mo() create_species_cons_cops <- function(type = c("CoNS", "CoPS")) { # Determination of which staphylococcal species are CoNS/CoPS according to: # - Becker et al. 2014, PMID 25278577 # - Becker et al. 2019, PMID 30872103 # - Becker et al. 2020, PMID 32056452 # this function returns class MO_staph <- AMR::microorganisms MO_staph <- MO_staph[which(MO_staph$genus == "Staphylococcus"), , drop = FALSE] if (type == "CoNS") { MO_staph[which(MO_staph$species %in% c( "coagulase-negative", "argensis", "arlettae", "auricularis", "borealis", "caeli", "capitis", "caprae", "carnosus", "casei", "chromogenes", "cohnii", "condimenti", "croceilyticus", "debuckii", "devriesei", "edaphicus", "epidermidis", "equorum", "felis", "fleurettii", "gallinarum", "haemolyticus", "hominis", "jettensis", "kloosii", "lentus", "lugdunensis", "massiliensis", "microti", "muscae", "nepalensis", "pasteuri", "petrasii", "pettenkoferi", "piscifermentans", "pragensis", "pseudoxylosus", "pulvereri", "rostri", "saccharolyticus", "saprophyticus", "sciuri", "simulans", "stepanovicii", "succinus", "ureilyticus", "vitulinus", "vitulus", "warneri", "xylosus", "caledonicus", "canis", "durrellii", "lloydii", "ratti", "taiwanensis" ) | # old, now renamed to S. schleiferi (but still as synonym in our data of course): (MO_staph$species == "schleiferi" & MO_staph$subspecies %in% c("schleiferi", ""))), "mo", drop = TRUE ] } else if (type == "CoPS") { MO_staph[which(MO_staph$species %in% c( "coagulase-positive", "coagulans", "agnetis", "argenteus", "cornubiensis", "delphini", "lutrae", "hyicus", "intermedius", "pseudintermedius", "pseudointermedius", "schweitzeri", "simiae", "roterodami", "singaporensis" ) | # old, now renamed to S. coagulans (but still as synonym in our data of course): (MO_staph$species == "schleiferi" & MO_staph$subspecies == "coagulans")), "mo", drop = TRUE ] } } create_MO_fullname_lower <- function() { MO_lookup <- AMR::microorganisms # use this paste instead of `fullname` to work with Viridans Group Streptococci, etc. MO_lookup$fullname_lower <- tolower(trimws(paste( MO_lookup$genus, MO_lookup$species, MO_lookup$subspecies ))) ind <- MO_lookup$genus == "" | grepl("^[(]unknown ", MO_lookup$fullname, perl = TRUE) MO_lookup[ind, "fullname_lower"] <- tolower(MO_lookup[ind, "fullname", drop = TRUE]) MO_lookup$fullname_lower <- trimws(gsub("[^.a-z0-9/ \\-]+", "", MO_lookup$fullname_lower, perl = TRUE)) MO_lookup$fullname_lower } MO_CONS <- create_species_cons_cops("CoNS") MO_COPS <- create_species_cons_cops("CoPS") MO_STREP_ABCG <- MO_lookup$mo[which(MO_lookup$genus == "Streptococcus" & MO_lookup$species %in% c( "pyogenes", "agalactiae", "dysgalactiae", "equi", "anginosus", "sanguinis", "salivarius", "group A", "group B", "group C", "group D", "group F", "group G", "group H", "group K", "group L" ))] MO_FULLNAME_LOWER <- create_MO_fullname_lower() MO_PREVALENT_GENERA <- c( "Absidia", "Acanthamoeba", "Acholeplasma", "Acremonium", "Actinotignum", "Aedes", "Alistipes", "Alloprevotella", "Alternaria", "Amoeba", "Anaerosalibacter", "Ancylostoma", "Angiostrongylus", "Anisakis", "Anopheles", "Apophysomyces", "Arachnia", "Aspergillus", "Aureobasidium", "Bacteroides", "Basidiobolus", "Beauveria", "Bergeyella", "Blastocystis", "Blastomyces", "Borrelia", "Brachyspira", "Branhamella", "Butyricimonas", "Candida", "Capillaria", "Capnocytophaga", "Catabacter", "Cetobacterium", "Chaetomium", "Chlamydia", "Chlamydophila", "Chryseobacterium", "Chrysonilia", "Cladophialophora", "Cladosporium", "Conidiobolus", "Contracaecum", "Cordylobia", "Cryptococcus", "Curvularia", "Deinococcus", "Demodex", "Dermatobia", "Dientamoeba", "Diphyllobothrium", "Dirofilaria", "Dysgonomonas", "Echinostoma", "Elizabethkingia", "Empedobacter", "Entamoeba", "Enterobius", "Exophiala", "Exserohilum", "Fasciola", "Flavobacterium", "Fonsecaea", "Fusarium", "Fusobacterium", "Giardia", "Haloarcula", "Halobacterium", "Halococcus", "Hendersonula", "Heterophyes", "Histomonas", "Histoplasma", "Hymenolepis", "Hypomyces", "Hysterothylacium", "Leishmania", "Lelliottia", "Leptosphaeria", "Leptotrichia", "Lucilia", "Lumbricus", "Malassezia", "Malbranchea", "Metagonimus", "Meyerozyma", "Microsporidium", "Microsporum", "Mortierella", "Mucor", "Mycocentrospora", "Mycoplasma", "Myroides", "Necator", "Nectria", "Ochroconis", "Odoribacter", "Oesophagostomum", "Oidiodendron", "Opisthorchis", "Ornithobacterium", "Parabacteroides", "Pediculus", "Pedobacter", "Phlebotomus", "Phocaeicola", "Phocanema", "Phoma", "Pichia", "Piedraia", "Pithomyces", "Pityrosporum", "Pneumocystis", "Porphyromonas", "Prevotella", "Pseudallescheria", "Pseudoterranova", "Pulex", "Rhizomucor", "Rhizopus", "Rhodotorula", "Riemerella", "Saccharomyces", "Sarcoptes", "Scolecobasidium", "Scopulariopsis", "Scytalidium", "Sphingobacterium", "Spirometra", "Spiroplasma", "Sporobolomyces", "Stachybotrys", "Streptobacillus", "Strongyloides", "Syngamus", "Taenia", "Tannerella", "Tenacibaculum", "Terrimonas", "Toxocara", "Treponema", "Trichinella", "Trichobilharzia", "Trichoderma", "Trichomonas", "Trichophyton", "Trichosporon", "Trichostrongylus", "Trichuris", "Tritirachium", "Trypanosoma", "Trombicula", "Tunga", "Ureaplasma", "Victivallis", "Wautersiella", "Weeksella", "Wuchereria" ) # antibiotic groups # (these will also be used for eucast_rules() and understanding data-raw/eucast_rules.tsv) globalenv_before_ab <- c(ls(envir = globalenv()), "globalenv_before_ab") AB_AMINOGLYCOSIDES <- antibiotics %>% filter(group %like% "aminoglycoside") %>% pull(ab) AB_AMINOPENICILLINS <- as.ab(c("AMP", "AMX")) AB_ANTIFUNGALS <- AB_lookup %>% filter(group %like% "antifungal") %>% pull(ab) AB_ANTIMYCOBACTERIALS <- AB_lookup %>% filter(group %like% "antimycobacterial") %>% pull(ab) AB_CARBAPENEMS <- antibiotics %>% filter(group %like% "carbapenem") %>% pull(ab) AB_CEPHALOSPORINS <- antibiotics %>% filter(group %like% "cephalosporin") %>% pull(ab) AB_CEPHALOSPORINS_1ST <- antibiotics %>% filter(group %like% "cephalosporin.*1") %>% pull(ab) AB_CEPHALOSPORINS_2ND <- antibiotics %>% filter(group %like% "cephalosporin.*2") %>% pull(ab) AB_CEPHALOSPORINS_3RD <- antibiotics %>% filter(group %like% "cephalosporin.*3") %>% pull(ab) AB_CEPHALOSPORINS_4TH <- antibiotics %>% filter(group %like% "cephalosporin.*4") %>% pull(ab) AB_CEPHALOSPORINS_5TH <- antibiotics %>% filter(group %like% "cephalosporin.*5") %>% pull(ab) AB_CEPHALOSPORINS_EXCEPT_CAZ <- AB_CEPHALOSPORINS[AB_CEPHALOSPORINS != "CAZ"] AB_FLUOROQUINOLONES <- antibiotics %>% filter(atc_group2 %like% "fluoroquinolone" | (group %like% "quinolone" & is.na(atc_group2))) %>% pull(ab) AB_GLYCOPEPTIDES <- antibiotics %>% filter(group %like% "glycopeptide") %>% pull(ab) AB_LIPOGLYCOPEPTIDES <- as.ab(c("DAL", "ORI", "TLV")) # dalba/orita/tela AB_GLYCOPEPTIDES_EXCEPT_LIPO <- AB_GLYCOPEPTIDES[!AB_GLYCOPEPTIDES %in% AB_LIPOGLYCOPEPTIDES] AB_LINCOSAMIDES <- antibiotics %>% filter(atc_group2 %like% "lincosamide" | (group %like% "lincosamide" & is.na(atc_group2))) %>% pull(ab) AB_MACROLIDES <- antibiotics %>% filter(atc_group2 %like% "macrolide" | (group %like% "macrolide" & is.na(atc_group2))) %>% pull(ab) AB_OXAZOLIDINONES <- antibiotics %>% filter(group %like% "oxazolidinone") %>% pull(ab) AB_PENICILLINS <- antibiotics %>% filter(group %like% "penicillin") %>% pull(ab) AB_POLYMYXINS <- antibiotics %>% filter(group %like% "polymyxin") %>% pull(ab) AB_QUINOLONES <- antibiotics %>% filter(group %like% "quinolone") %>% pull(ab) AB_STREPTOGRAMINS <- antibiotics %>% filter(atc_group2 %like% "streptogramin") %>% pull(ab) AB_TETRACYCLINES <- antibiotics %>% filter(group %like% "tetracycline") %>% pull(ab) AB_TETRACYCLINES_EXCEPT_TGC <- AB_TETRACYCLINES[AB_TETRACYCLINES != "TGC"] AB_TRIMETHOPRIMS <- antibiotics %>% filter(group %like% "trimethoprim") %>% pull(ab) AB_UREIDOPENICILLINS <- as.ab(c("PIP", "TZP", "AZL", "MEZ")) AB_BETALACTAMS <- c(AB_PENICILLINS, AB_CEPHALOSPORINS, AB_CARBAPENEMS) # this will be used for documentation: DEFINED_AB_GROUPS <- ls(envir = globalenv()) DEFINED_AB_GROUPS <- DEFINED_AB_GROUPS[!DEFINED_AB_GROUPS %in% globalenv_before_ab] create_AB_lookup <- function() { AB_lookup <- AMR::antibiotics AB_lookup$generalised_name <- generalise_antibiotic_name(AB_lookup$name) AB_lookup$generalised_synonyms <- lapply(AB_lookup$synonyms, generalise_antibiotic_name) AB_lookup$generalised_abbreviations <- lapply(AB_lookup$abbreviations, generalise_antibiotic_name) AB_lookup$generalised_loinc <- lapply(AB_lookup$loinc, generalise_antibiotic_name) AB_lookup$generalised_all <- unname(lapply( as.list(as.data.frame(t(AB_lookup[, c( "ab", "atc", "cid", "name", colnames(AB_lookup)[colnames(AB_lookup) %like% "generalised"] ), drop = FALSE ]), stringsAsFactors = FALSE )), function(x) { x <- generalise_antibiotic_name(unname(unlist(x))) x[x != ""] } )) AB_lookup[, colnames(AB_lookup)[colnames(AB_lookup) %like% "^generalised"]] } AB_LOOKUP <- create_AB_lookup() # Export to package as internal data ---- usethis::ui_info(paste0("Updating internal package data")) suppressMessages(usethis::use_data(EUCAST_RULES_DF, TRANSLATIONS, LANGUAGES_SUPPORTED_NAMES, LANGUAGES_SUPPORTED, MO_CONS, MO_COPS, MO_STREP_ABCG, MO_FULLNAME_LOWER, MO_PREVALENT_GENERA, AB_LOOKUP, AB_AMINOGLYCOSIDES, AB_AMINOPENICILLINS, AB_ANTIFUNGALS, AB_ANTIMYCOBACTERIALS, AB_CARBAPENEMS, AB_CEPHALOSPORINS, AB_CEPHALOSPORINS_1ST, AB_CEPHALOSPORINS_2ND, AB_CEPHALOSPORINS_3RD, AB_CEPHALOSPORINS_4TH, AB_CEPHALOSPORINS_5TH, AB_CEPHALOSPORINS_EXCEPT_CAZ, AB_FLUOROQUINOLONES, AB_LIPOGLYCOPEPTIDES, AB_GLYCOPEPTIDES, AB_GLYCOPEPTIDES_EXCEPT_LIPO, AB_LINCOSAMIDES, AB_MACROLIDES, AB_OXAZOLIDINONES, AB_PENICILLINS, AB_POLYMYXINS, AB_QUINOLONES, AB_STREPTOGRAMINS, AB_TETRACYCLINES, AB_TETRACYCLINES_EXCEPT_TGC, AB_TRIMETHOPRIMS, AB_UREIDOPENICILLINS, AB_BETALACTAMS, DEFINED_AB_GROUPS, internal = TRUE, overwrite = TRUE, version = 2, compress = "xz" )) # Export data sets to the repository in different formats ----------------- for (pkg in c("haven", "openxlsx", "arrow")) { if (!pkg %in% rownames(utils::installed.packages())) { message("NOTE: package '", pkg, "' not installed! Ignoring export where this package is required.") } } if ("digest" %in% rownames(utils::installed.packages())) { md5 <- function(object) digest::digest(object, "md5") } else { # will write all files anyway, since MD5 hash cannot be determined md5 <- function(object) "unknown-md5-hash" } write_md5 <- function(object) { conn <- file(paste0("data-raw/", deparse(substitute(object)), ".md5")) writeLines(md5(object), conn) close(conn) } changed_md5 <- function(object) { tryCatch( { conn <- file(paste0("data-raw/", deparse(substitute(object)), ".md5")) compared <- md5(object) != readLines(con = conn) close(conn) compared }, error = function(e) TRUE ) } # give official names to ABs and MOs rsi <- rsi_translation %>% mutate(mo_name = mo_name(mo, language = NULL, keep_synonyms = TRUE, info = FALSE), .after = mo) %>% mutate(ab_name = ab_name(ab, language = NULL), .after = ab) if (changed_md5(rsi)) { usethis::ui_info(paste0("Saving {usethis::ui_value('rsi_translation')} to {usethis::ui_value('data-raw/')}")) write_md5(rsi) try(saveRDS(rsi, "data-raw/rsi_translation.rds", version = 2, compress = "xz"), silent = TRUE) try(write.table(rsi, "data-raw/rsi_translation.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE) try(haven::write_sas(rsi, "data-raw/rsi_translation.sas"), silent = TRUE) try(haven::write_sav(rsi, "data-raw/rsi_translation.sav"), silent = TRUE) try(haven::write_dta(rsi, "data-raw/rsi_translation.dta"), silent = TRUE) try(openxlsx::write.xlsx(rsi, "data-raw/rsi_translation.xlsx"), silent = TRUE) try(arrow::write_feather(rsi, "data-raw/rsi_translation.feather"), silent = TRUE) try(arrow::write_parquet(rsi, "data-raw/rsi_translation.parquet"), silent = TRUE) } if (changed_md5(microorganisms)) { usethis::ui_info(paste0("Saving {usethis::ui_value('microorganisms')} to {usethis::ui_value('data-raw/')}")) write_md5(microorganisms) try(saveRDS(microorganisms, "data-raw/microorganisms.rds", version = 2, compress = "xz"), silent = TRUE) try(write.table(mo, "data-raw/microorganisms.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE) max_50_snomed <- sapply(microorganisms$snomed, function(x) paste(x[seq_len(min(50, length(x), na.rm = TRUE))], collapse = " ")) mo <- microorganisms mo$snomed <- max_50_snomed mo <- dplyr::mutate_if(mo, ~ !is.numeric(.), as.character) try(haven::write_sas(mo, "data-raw/microorganisms.sas"), silent = TRUE) try(haven::write_sav(mo, "data-raw/microorganisms.sav"), silent = TRUE) try(haven::write_dta(mo, "data-raw/microorganisms.dta"), silent = TRUE) try(openxlsx::write.xlsx(mo, "data-raw/microorganisms.xlsx"), silent = TRUE) try(arrow::write_feather(microorganisms, "data-raw/microorganisms.feather"), silent = TRUE) try(arrow::write_parquet(microorganisms, "data-raw/microorganisms.parquet"), silent = TRUE) } ab <- dplyr::mutate_if(antibiotics, ~ !is.numeric(.), as.character) if (changed_md5(ab)) { usethis::ui_info(paste0("Saving {usethis::ui_value('antibiotics')} to {usethis::ui_value('data-raw/')}")) write_md5(ab) try(saveRDS(antibiotics, "data-raw/antibiotics.rds", version = 2, compress = "xz"), silent = TRUE) try(write.table(antibiotics, "data-raw/antibiotics.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE) try(haven::write_sas(ab, "data-raw/antibiotics.sas"), silent = TRUE) try(haven::write_sav(ab, "data-raw/antibiotics.sav"), silent = TRUE) try(haven::write_dta(ab, "data-raw/antibiotics.dta"), silent = TRUE) try(openxlsx::write.xlsx(ab, "data-raw/antibiotics.xlsx"), silent = TRUE) try(arrow::write_feather(antibiotics, "data-raw/antibiotics.feather"), silent = TRUE) try(arrow::write_parquet(antibiotics, "data-raw/antibiotics.parquet"), silent = TRUE) } av <- dplyr::mutate_if(antivirals, ~ !is.numeric(.), as.character) if (changed_md5(av)) { usethis::ui_info(paste0("Saving {usethis::ui_value('antivirals')} to {usethis::ui_value('data-raw/')}")) write_md5(av) try(saveRDS(antivirals, "data-raw/antivirals.rds", version = 2, compress = "xz"), silent = TRUE) try(write.table(av, "data-raw/antivirals.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE) try(haven::write_sas(av, "data-raw/antivirals.sas"), silent = TRUE) try(haven::write_sav(av, "data-raw/antivirals.sav"), silent = TRUE) try(haven::write_dta(av, "data-raw/antivirals.dta"), silent = TRUE) try(openxlsx::write.xlsx(av, "data-raw/antivirals.xlsx"), silent = TRUE) try(arrow::write_feather(antivirals, "data-raw/antivirals.feather"), silent = TRUE) try(arrow::write_parquet(antivirals, "data-raw/antivirals.parquet"), silent = TRUE) } # give official names to ABs and MOs intrinsicR <- data.frame( microorganism = mo_name(intrinsic_resistant$mo, language = NULL, keep_synonyms = TRUE, info = FALSE), antibiotic = ab_name(intrinsic_resistant$ab, language = NULL), stringsAsFactors = FALSE ) if (changed_md5(intrinsicR)) { usethis::ui_info(paste0("Saving {usethis::ui_value('intrinsic_resistant')} to {usethis::ui_value('data-raw/')}")) write_md5(intrinsicR) try(saveRDS(intrinsicR, "data-raw/intrinsic_resistant.rds", version = 2, compress = "xz"), silent = TRUE) try(write.table(intrinsicR, "data-raw/intrinsic_resistant.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE) try(haven::write_sas(intrinsicR, "data-raw/intrinsic_resistant.sas"), silent = TRUE) try(haven::write_sav(intrinsicR, "data-raw/intrinsic_resistant.sav"), silent = TRUE) try(haven::write_dta(intrinsicR, "data-raw/intrinsic_resistant.dta"), silent = TRUE) try(openxlsx::write.xlsx(intrinsicR, "data-raw/intrinsic_resistant.xlsx"), silent = TRUE) try(arrow::write_feather(intrinsicR, "data-raw/intrinsic_resistant.feather"), silent = TRUE) try(arrow::write_parquet(intrinsicR, "data-raw/intrinsic_resistant.parquet"), silent = TRUE) } if (changed_md5(dosage)) { usethis::ui_info(paste0("Saving {usethis::ui_value('dosage')} to {usethis::ui_value('data-raw/')}")) write_md5(dosage) try(saveRDS(dosage, "data-raw/dosage.rds", version = 2, compress = "xz"), silent = TRUE) try(write.table(dosage, "data-raw/dosage.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE) try(haven::write_sas(dosage, "data-raw/dosage.sas"), silent = TRUE) try(haven::write_sav(dosage, "data-raw/dosage.sav"), silent = TRUE) try(haven::write_dta(dosage, "data-raw/dosage.dta"), silent = TRUE) try(openxlsx::write.xlsx(dosage, "data-raw/dosage.xlsx"), silent = TRUE) try(arrow::write_feather(dosage, "data-raw/dosage.feather"), silent = TRUE) try(arrow::write_parquet(dosage, "data-raw/dosage.parquet"), silent = TRUE) } suppressMessages(reset_AMR_locale()) # remove leftovers from global env current_globalenv <- ls(envir = globalenv()) rm(list = current_globalenv[!current_globalenv %in% old_globalenv]) rm(current_globalenv) devtools::load_all(quiet = TRUE) suppressMessages(set_AMR_locale("English")) # Update URLs ------------------------------------------------------------- usethis::ui_info("Checking URLs for redirects") invisible(capture.output(urlchecker::url_update())) # Document pkg ------------------------------------------------------------ usethis::ui_info("Documenting package") suppressMessages(devtools::document(quiet = TRUE)) # Style pkg --------------------------------------------------------------- if (interactive()) { # only when sourcing this file ourselves usethis::ui_info("Styling package") styler::style_pkg( style = styler::tidyverse_style, filetype = c("R", "Rmd") ) } # Finished ---------------------------------------------------------------- usethis::ui_done("All done") suppressMessages(reset_AMR_locale())