Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 54 11 30 29 30 50  7 45  9  6 24 33 46 62 13 31 11 14 11 56 60 40 56  6 16
#>  [26]  8 61 60 64 40  9 62 60 49 58 55  2 33  3 57 11 22 20  4 56  9 44 13 15 54
#>  [51] 59 62 41 48 56 20 15 57 24 21 45  4  9 42 45 29 35 60 64 11 11 19  8 37 45
#>  [76] 63 41 48 49 31  7 58  6  3 43 12 54 59  4 63  1 38 35 36 62 20  5 43 24 60
#> [101] 10 47 12 59 57 50 44 59 16 61 51 38  4 18  8 10 64 12 42 37 16 47  1 50 37
#> [126] 12 34  8 54 61 22 52 32 28 26 34 53 46 27 48 37 31 40 37 17 61 55 25 25 62
#> [151] 27 51 25 18 16 39  9  8 21 33 45 57 26 59  6 10 23 22 64 58 45 16 34  3 62
#> [176] 54 20 55 47  9 29 31 23 59 40 58 63 61 18 49 29 34 57 42 53  4 63 28 23 61
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
#>  [13]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
#>  [25] FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
#>  [37]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
#>  [49]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
#>  [61] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
#>  [73]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
#>  [85] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
#>  [97]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
#> [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [121] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
#> [133]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
#> [145]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
#> [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
#> [169] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#> [181] FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
#> [193]  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 3 × 46
#>   date       patient   age gender ward      mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>     <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-10-11 974319     78 M      Outpatie… B_STPHY_EPDR S     NA    S     NA   
#> 2 2002-08-19 A49852     70 M      Clinical  B_ESCHR_COLI R     NA    NA    NA   
#> 3 2002-10-11 871360     78 M      Clinical  B_STPHY_EPDR R     NA    S     NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 324415  2015-10-03 A         FALSE      
#>  2 895298  2004-06-10 C         FALSE      
#>  3 380628  2009-01-18 B         FALSE      
#>  4 501361  2008-11-01 B         FALSE      
#>  5 380628  2009-01-18 B         FALSE      
#>  6 454595  2014-12-20 B         FALSE      
#>  7 D63414  2003-09-09 C         FALSE      
#>  8 545388  2013-07-29 C         TRUE       
#>  9 288260  2004-02-01 B         FALSE      
#> 10 328792  2003-05-27 B         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [181]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 ICU        2015-10-03 324415          1 TRUE       
#>  2 ICU        2004-06-10 895298          1 TRUE       
#>  3 Clinical   2009-01-18 380628          1 TRUE       
#>  4 Clinical   2008-11-01 501361          1 TRUE       
#>  5 Clinical   2009-01-18 380628          1 FALSE      
#>  6 Outpatient 2014-12-20 454595          1 TRUE       
#>  7 Clinical   2003-09-09 D63414          1 TRUE       
#>  8 Clinical   2013-07-29 545388          1 TRUE       
#>  9 ICU        2004-02-01 288260          1 TRUE       
#> 10 Clinical   2003-05-27 328792          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          116             15            56            72
#> 2 ICU                54             12            35            43
#> 3 Outpatient         11              7             9             9
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [189]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 324415  B_PROTS_MRBL ICU        TRUE        
#>  2 895298  B_STPHY_CONS ICU        TRUE        
#>  3 380628  B_ESCHR_COLI Clinical   TRUE        
#>  4 501361  B_ESCHR_COLI Clinical   TRUE        
#>  5 380628  B_ESCHR_COLI Clinical   FALSE       
#>  6 454595  B_STPHY_HMNS Outpatient TRUE        
#>  7 D63414  B_PROTS_MRBL Clinical   TRUE        
#>  8 545388  B_KLBSL_PNMN Clinical   TRUE        
#>  9 288260  B_STPHY_EPDR ICU        TRUE        
#> 10 328792  B_STRPT_MITS Clinical   TRUE        
#> # … with 190 more rows
# }