freq.Rd
Create a frequency table of a vector with items or a data frame. Supports quasiquotation and markdown for reports. top_freq
can be used to get the top/bottom n items of a frequency table, with counts as names.
frequency_tbl(x, ..., sort.count = TRUE, nmax = getOption("max.print.freq"), na.rm = TRUE, row.names = TRUE, markdown = !interactive(), digits = 2, quote = FALSE, header = !markdown, title = NULL, na = "<NA>", droplevels = TRUE, sep = " ", decimal.mark = getOption("OutDec"), big.mark = ifelse(decimal.mark != ",", ",", ".")) freq(x, ..., sort.count = TRUE, nmax = getOption("max.print.freq"), na.rm = TRUE, row.names = TRUE, markdown = !interactive(), digits = 2, quote = FALSE, header = !markdown, title = NULL, na = "<NA>", droplevels = TRUE, sep = " ", decimal.mark = getOption("OutDec"), big.mark = ifelse(decimal.mark != ",", ",", ".")) top_freq(f, n) # S3 method for frequency_tbl print(x, nmax = getOption("max.print.freq", default = 15), markdown = !interactive(), header = !markdown, decimal.mark = getOption("OutDec"), big.mark = ifelse(decimal.mark != ",", ",", "."), ...)
x | vector of any class or a |
---|---|
... | up to nine different columns of |
sort.count | sort on count, i.e. frequencies. This will be |
nmax | number of row to print. The default, |
na.rm | a logical value indicating whether |
row.names | a logical value indicating whether row indices should be printed as |
markdown | a logical value indicating whether the frequency table should be printed in markdown format. This will print all rows and is default behaviour in non-interactive R sessions (like when knitting RMarkdown files). |
digits | how many significant digits are to be used for numeric values in the header (not for the items themselves, that depends on |
quote | a logical value indicating whether or not strings should be printed with surrounding quotes |
header | a logical value indicating whether an informative header should be printed |
title | text to show above frequency table, at default to tries to coerce from the variables passed to |
na | a character string to should be used to show empty ( |
droplevels | a logical value indicating whether in factors empty levels should be dropped |
sep | a character string to separate the terms when selecting multiple columns |
decimal.mark |
used for prettying (longish) numerical and complex sequences.
Passed to |
big.mark |
used for prettying (longish) numerical and complex sequences.
Passed to |
f | a frequency table |
n | number of top n items to return, use -n for the bottom n items. It will include more than |
A data.frame
(with an additional class "frequency_tbl"
) with five columns: item
, count
, percent
, cum_count
and cum_percent
.
Frequency tables (or frequency distributions) are summaries of the distribution of values in a sample. With the `freq` function, you can create univariate frequency tables. Multiple variables will be pasted into one variable, so it forces a univariate distribution. This package also has a vignette available to explain the use of this function further, run browseVignettes("AMR")
to read it.
For numeric values of any class, these additional values will all be calculated with na.rm = TRUE
and shown into the header:
Mean, using mean
Standard Deviation, using sd
Coefficient of Variation (CV), the standard deviation divided by the mean
Mean Absolute Deviation (MAD), using mad
Tukey Five-Number Summaries (minimum, Q1, median, Q3, maximum), using fivenum
Interquartile Range (IQR) calculated as Q3 - Q1
using the Tukey Five-Number Summaries, i.e. not using the quantile
function
Coefficient of Quartile Variation (CQV, sometimes called coefficient of dispersion), calculated as (Q3 - Q1) / (Q3 + Q1)
using the Tukey Five-Number Summaries
Outliers (total count and unique count), using boxplot.stats
For dates and times of any class, these additional values will be calculated with na.rm = TRUE
and shown into the header:
Oldest, using min
Newest, using max
, with difference between newest and oldest
Median, using median
, with percentage since oldest
In factors, all factor levels that are not existing in the input data will be dropped.
The function top_freq
uses top_n
internally and will include more than n
rows if there are ties.
#> #> #> **Frequency table** #> #> #> | |Item | Count| Percent| Cum. Count| Cum. Percent| #> |:--|:----|-----:|-------:|----------:|------------:| #> |1 |D | 762| 38.1%| 762| 38.1%| #> |2 |B | 663| 33.2%| 1,425| 71.3%| #> |3 |A | 321| 16.1%| 1,746| 87.3%| #> |4 |C | 254| 12.7%| 2,000| 100.0%| #> #>freq(septic_patients[, "hospital_id"])#> #> #> **Frequency table** #> #> #> | |Item | Count| Percent| Cum. Count| Cum. Percent| #> |:--|:----|-----:|-------:|----------:|------------:| #> |1 |D | 762| 38.1%| 762| 38.1%| #> |2 |B | 663| 33.2%| 1,425| 71.3%| #> |3 |A | 321| 16.1%| 1,746| 87.3%| #> |4 |C | 254| 12.7%| 2,000| 100.0%| #> #>septic_patients$hospital_id %>% freq()#> #> #> **Frequency table** #> #> #> | |Item | Count| Percent| Cum. Count| Cum. Percent| #> |:--|:----|-----:|-------:|----------:|------------:| #> |1 |D | 762| 38.1%| 762| 38.1%| #> |2 |B | 663| 33.2%| 1,425| 71.3%| #> |3 |A | 321| 16.1%| 1,746| 87.3%| #> |4 |C | 254| 12.7%| 2,000| 100.0%| #> #>septic_patients[, "hospital_id"] %>% freq()#> #> #> **Frequency table** #> #> #> | |Item | Count| Percent| Cum. Count| Cum. Percent| #> |:--|:----|-----:|-------:|----------:|------------:| #> |1 |D | 762| 38.1%| 762| 38.1%| #> |2 |B | 663| 33.2%| 1,425| 71.3%| #> |3 |A | 321| 16.1%| 1,746| 87.3%| #> |4 |C | 254| 12.7%| 2,000| 100.0%| #> #>septic_patients %>% freq("hospital_id")#> #> #> **Frequency table of `hospital_id`** #> #> #> | |Item | Count| Percent| Cum. Count| Cum. Percent| #> |:--|:----|-----:|-------:|----------:|------------:| #> |1 |D | 762| 38.1%| 762| 38.1%| #> |2 |B | 663| 33.2%| 1,425| 71.3%| #> |3 |A | 321| 16.1%| 1,746| 87.3%| #> |4 |C | 254| 12.7%| 2,000| 100.0%| #> #>septic_patients %>% freq(hospital_id) #<- easiest to remember (tidyverse)#> #> #> **Frequency table of `hospital_id`** #> #> #> | |Item | Count| Percent| Cum. Count| Cum. Percent| #> |:--|:----|-----:|-------:|----------:|------------:| #> |1 |D | 762| 38.1%| 762| 38.1%| #> |2 |B | 663| 33.2%| 1,425| 71.3%| #> |3 |A | 321| 16.1%| 1,746| 87.3%| #> |4 |C | 254| 12.7%| 2,000| 100.0%| #> #># you could also use `select` or `pull` to get your variables septic_patients %>% filter(hospital_id == "A") %>% select(mo) %>% freq()#> #> #> **Frequency table** #> #> #> | |Item | Count| Percent| Cum. Count| Cum. Percent| #> |:--|:------------|-----:|-------:|----------:|------------:| #> |1 |B_ESCHR_COL | 62| 19.3%| 62| 19.3%| #> |2 |B_STPHY_EPI | 46| 14.3%| 108| 33.6%| #> |3 |B_STPHY_CNS | 38| 11.8%| 146| 45.5%| #> |4 |B_STPHY_AUR | 35| 10.9%| 181| 56.4%| #> |5 |B_STPHY_HOM | 25| 7.8%| 206| 64.2%| #> |6 |B_STRPTC_PNE | 12| 3.7%| 218| 67.9%| #> |7 |B_PROTS_MIR | 11| 3.4%| 229| 71.3%| #> |8 |B_ENTRC_FAE | 10| 3.1%| 239| 74.5%| #> |9 |B_KLBSL_PNE | 8| 2.5%| 247| 76.9%| #> |10 |B_STRPTC_PYO | 7| 2.2%| 254| 79.1%| #> |11 |B_BCTRD_FRA | 5| 1.6%| 259| 80.7%| #> |12 |B_KLBSL_OXY | 5| 1.6%| 264| 82.2%| #> |13 |B_STRPTC | 5| 1.6%| 269| 83.8%| #> |14 |B_ENTRC_IUM | 4| 1.2%| 273| 85.0%| #> |15 |B_STRPTC_MIT | 4| 1.2%| 277| 86.3%| #> |16 |B_CRYNB | 3| 0.9%| 280| 87.2%| #> |17 |B_PDMNS_AER | 3| 0.9%| 283| 88.2%| #> |18 |B_STPHY_CAP | 3| 0.9%| 286| 89.1%| #> |19 |B_STRPTC_DYS | 3| 0.9%| 289| 90.0%| #> |20 |F_CANDD_GLB | 3| 0.9%| 292| 91.0%| #> |21 |B_ACNTB | 2| 0.6%| 294| 91.6%| #> |22 |B_ENTRB_CLO | 2| 0.6%| 296| 92.2%| #> |23 |B_HMPHL_INF | 2| 0.6%| 298| 92.8%| #> |24 |B_MCRCCC | 2| 0.6%| 300| 93.5%| #> |25 |B_PROTS_VUL | 2| 0.6%| 302| 94.1%| #> |26 |B_SERRT_MAR | 2| 0.6%| 304| 94.7%| #> |27 |B_STPHY_COH | 2| 0.6%| 306| 95.3%| #> |28 |B_STRPTC_BOV | 2| 0.6%| 308| 96.0%| #> |29 |B_AMYCS_ODO | 1| 0.3%| 309| 96.3%| #> |30 |B_ARCCC_URI | 1| 0.3%| 310| 96.6%| #> |31 |B_CTRDM_PER | 1| 0.3%| 311| 96.9%| #> |32 |B_CTRDM_SEP | 1| 0.3%| 312| 97.2%| #> |33 |B_STPHY_SCH | 1| 0.3%| 313| 97.5%| #> |34 |B_STRPTC_AGA | 1| 0.3%| 314| 97.8%| #> |35 |B_STRPTC_EQU | 1| 0.3%| 315| 98.1%| #> |36 |B_STRPTC_GRA | 1| 0.3%| 316| 98.4%| #> |37 |B_STRPTC_GRB | 1| 0.3%| 317| 98.8%| #> |38 |B_STRPTC_SAN | 1| 0.3%| 318| 99.1%| #> |39 |B_VLLNL_PAR | 1| 0.3%| 319| 99.4%| #> |40 |F_CANDD_ALB | 1| 0.3%| 320| 99.7%| #> |41 |F_CANDD_TRO | 1| 0.3%| 321| 100.0%| #> #># multiple selected variables will be pasted together septic_patients %>% left_join_microorganisms %>% filter(hospital_id == "A") %>% freq(genus, species)#>#> #> #> **Frequency table of `genus` and `species`** #> #> #> | |Item | Count| Percent| Cum. Count| Cum. Percent| #> |:--|:---------------------------------|-----:|-------:|----------:|------------:| #> |1 |Escherichia coli | 62| 19.3%| 62| 19.3%| #> |2 |Staphylococcus epidermidis | 46| 14.3%| 108| 33.6%| #> |3 |Staphylococcus coagulase negative | 38| 11.8%| 146| 45.5%| #> |4 |Staphylococcus aureus | 35| 10.9%| 181| 56.4%| #> |5 |Staphylococcus hominis | 25| 7.8%| 206| 64.2%| #> |6 |Streptococcus pneumoniae | 12| 3.7%| 218| 67.9%| #> |7 |Proteus mirabilis | 11| 3.4%| 229| 71.3%| #> |8 |Enterococcus faecalis | 10| 3.1%| 239| 74.5%| #> |9 |Klebsiella pneumoniae | 8| 2.5%| 247| 76.9%| #> |10 |Streptococcus pyogenes | 7| 2.2%| 254| 79.1%| #> |11 |Bacteroides fragilis | 5| 1.6%| 259| 80.7%| #> |12 |Klebsiella oxytoca | 5| 1.6%| 264| 82.2%| #> |13 |Streptococcus species | 5| 1.6%| 269| 83.8%| #> |14 |Enterococcus faecium | 4| 1.2%| 273| 85.0%| #> |15 |Streptococcus mitis | 4| 1.2%| 277| 86.3%| #> |16 |Candida glabrata | 3| 0.9%| 280| 87.2%| #> |17 |Corynebacterium species | 3| 0.9%| 283| 88.2%| #> |18 |Pseudomonas aeruginosa | 3| 0.9%| 286| 89.1%| #> |19 |Staphylococcus capitis | 3| 0.9%| 289| 90.0%| #> |20 |Streptococcus dysgalactiae | 3| 0.9%| 292| 91.0%| #> |21 |Acinetobacter species | 2| 0.6%| 294| 91.6%| #> |22 |Enterobacter cloacae | 2| 0.6%| 296| 92.2%| #> |23 |Haemophilus influenzae | 2| 0.6%| 298| 92.8%| #> |24 |Micrococcus species | 2| 0.6%| 300| 93.5%| #> |25 |Proteus vulgaris | 2| 0.6%| 302| 94.1%| #> |26 |Serratia marcescens | 2| 0.6%| 304| 94.7%| #> |27 |Staphylococcus cohnii | 2| 0.6%| 306| 95.3%| #> |28 |Streptococcus bovis | 2| 0.6%| 308| 96.0%| #> |29 |Actinomyces odontolyticus | 1| 0.3%| 309| 96.3%| #> |30 |Aerococcus urinae | 1| 0.3%| 310| 96.6%| #> |31 |Candida albicans | 1| 0.3%| 311| 96.9%| #> |32 |Candida tropicalis | 1| 0.3%| 312| 97.2%| #> |33 |Clostridium perfringens | 1| 0.3%| 313| 97.5%| #> |34 |Clostridium septicum | 1| 0.3%| 314| 97.8%| #> |35 |Staphylococcus schleiferi | 1| 0.3%| 315| 98.1%| #> |36 |Streptococcus agalactiae | 1| 0.3%| 316| 98.4%| #> |37 |Streptococcus equi | 1| 0.3%| 317| 98.8%| #> |38 |Streptococcus group A | 1| 0.3%| 318| 99.1%| #> |39 |Streptococcus group B | 1| 0.3%| 319| 99.4%| #> |40 |Streptococcus sanguinis | 1| 0.3%| 320| 99.7%| #> |41 |Veillonella parvula | 1| 0.3%| 321| 100.0%| #> #>#> #> #> **Frequency table of `gender` (grouped by `hospital_id`)** #> #> #> | |Group |Item | Count| Percent| Cum. Count| Cum. Percent| #> |:--|:-----|:----|-----:|-------:|----------:|------------:| #> |1 |1 |F | 148| 7.4%| 148| 7.4%| #> |2 | |M | 173| 8.7%| 321| 16.1%| #> |3 |2 |F | 332| 16.6%| 332| 16.6%| #> |4 | |M | 331| 16.6%| 663| 33.2%| #> |5 |3 |F | 121| 6.1%| 121| 6.1%| #> |6 | |M | 133| 6.7%| 254| 12.7%| #> |7 |4 |F | 368| 18.4%| 368| 18.4%| #> |8 | |M | 394| 19.7%| 762| 38.1%| #> #># get top 10 bugs of hospital A as a vector septic_patients %>% filter(hospital_id == "A") %>% freq(mo) %>% top_freq(10)#> 62 46 38 35 25 #> "B_ESCHR_COL" "B_STPHY_EPI" "B_STPHY_CNS" "B_STPHY_AUR" "B_STPHY_HOM" #> 12 11 10 8 7 #> "B_STRPTC_PNE" "B_PROTS_MIR" "B_ENTRC_FAE" "B_KLBSL_PNE" "B_STRPTC_PYO"# save frequency table to an object years <- septic_patients %>% mutate(year = format(date, "%Y")) %>% freq(year) # show only the top 5 years %>% print(nmax = 5)#> #> #> **Frequency table of `year`** #> #> #> | |Item | Count| Percent| Cum. Count| Cum. Percent| #> |:--|:----|-----:|-------:|----------:|------------:| #> |1 |2017 | 168| 8.4%| 168| 8.4%| #> |2 |2004 | 167| 8.4%| 335| 16.8%| #> |3 |2016 | 143| 7.2%| 478| 23.9%| #> |4 |2002 | 136| 6.8%| 614| 30.7%| #> |5 |2003 | 135| 6.8%| 749| 37.5%| #> |6 |2006 | 134| 6.7%| 883| 44.2%| #> |7 |2005 | 127| 6.4%| 1,010| 50.5%| #> |8 |2008 | 125| 6.3%| 1,135| 56.8%| #> |9 |2011 | 123| 6.2%| 1,258| 62.9%| #> |10 |2015 | 117| 5.9%| 1,375| 68.8%| #> |11 |2007 | 116| 5.8%| 1,491| 74.6%| #> |12 |2014 | 105| 5.3%| 1,596| 79.8%| #> |13 |2010 | 103| 5.2%| 1,699| 85.0%| #> |14 |2009 | 102| 5.1%| 1,801| 90.1%| #> |15 |2013 | 101| 5.1%| 1,902| 95.1%| #> |16 |2012 | 98| 4.9%| 2,000| 100.0%| #> #># save to an object with formatted percentages years <- format(years) # print a histogram of numeric values septic_patients %>% freq(age) %>% hist()#> item count percent cum_count cum_percent #> 1 83 102 0.0510 102 0.0510 #> 2 80 75 0.0375 177 0.0885 #> 3 75 72 0.0360 249 0.1245 #> 4 79 72 0.0360 321 0.1605 #> 5 78 70 0.0350 391 0.1955 #> 6 76 65 0.0325 456 0.2280 #> 7 82 62 0.0310 518 0.2590 #> 8 86 61 0.0305 579 0.2895 #> 9 81 58 0.0290 637 0.3185 #> 10 87 57 0.0285 694 0.3470 #> 11 74 54 0.0270 748 0.3740 #> 12 73 53 0.0265 801 0.4005 #> 13 77 52 0.0260 853 0.4265 #> 14 67 51 0.0255 904 0.4520 #> 15 88 51 0.0255 955 0.4775 #> 16 70 50 0.0250 1005 0.5025 #> 17 69 49 0.0245 1054 0.5270 #> 18 71 47 0.0235 1101 0.5505 #> 19 72 45 0.0225 1146 0.5730 #> 20 65 43 0.0215 1189 0.5945 #> 21 66 42 0.0210 1231 0.6155 #> 22 85 42 0.0210 1273 0.6365 #> 23 68 41 0.0205 1314 0.6570 #> 24 47 39 0.0195 1353 0.6765 #> 25 90 35 0.0175 1388 0.6940 #> 26 89 34 0.0170 1422 0.7110 #> 27 84 33 0.0165 1455 0.7275 #> 28 62 32 0.0160 1487 0.7435 #> 29 59 31 0.0155 1518 0.7590 #> 30 64 31 0.0155 1549 0.7745 #> 31 57 29 0.0145 1578 0.7890 #> 32 63 28 0.0140 1606 0.8030 #> 33 51 27 0.0135 1633 0.8165 #> 34 52 25 0.0125 1658 0.8290 #> 35 60 25 0.0125 1683 0.8415 #> 36 53 23 0.0115 1706 0.8530 #> 37 58 23 0.0115 1729 0.8645 #> 38 50 22 0.0110 1751 0.8755 #> 39 56 21 0.0105 1772 0.8860 #> 40 45 20 0.0100 1792 0.8960 #> 41 55 17 0.0085 1809 0.9045 #> 42 61 17 0.0085 1826 0.9130 #> 43 93 16 0.0080 1842 0.9210 #> 44 43 15 0.0075 1857 0.9285 #> 45 44 13 0.0065 1870 0.9350 #> 46 46 13 0.0065 1883 0.9415 #> 47 41 10 0.0050 1893 0.9465 #> 48 48 10 0.0050 1903 0.9515 #> 49 30 9 0.0045 1912 0.9560 #> 50 54 9 0.0045 1921 0.9605 #> 51 92 9 0.0045 1930 0.9650 #> 52 91 8 0.0040 1938 0.9690 #> 53 42 7 0.0035 1945 0.9725 #> 54 38 6 0.0030 1951 0.9755 #> 55 94 6 0.0030 1957 0.9785 #> 56 20 4 0.0020 1961 0.9805 #> 57 39 4 0.0020 1965 0.9825 #> 58 49 4 0.0020 1969 0.9845 #> 59 19 3 0.0015 1972 0.9860 #> 60 29 3 0.0015 1975 0.9875 #> 61 33 3 0.0015 1978 0.9890 #> 62 37 3 0.0015 1981 0.9905 #> 63 40 3 0.0015 1984 0.9920 #> 64 18 2 0.0010 1986 0.9930 #> 65 24 2 0.0010 1988 0.9940 #> 66 31 2 0.0010 1990 0.9950 #> 67 36 2 0.0010 1992 0.9960 #> 68 97 2 0.0010 1994 0.9970 #> 69 14 1 0.0005 1995 0.9975 #> 70 22 1 0.0005 1996 0.9980 #> 71 32 1 0.0005 1997 0.9985 #> 72 34 1 0.0005 1998 0.9990 #> 73 35 1 0.0005 1999 0.9995 #> 74 95 1 0.0005 2000 1.0000#> [1] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 #> [25] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 #> [49] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 #> [73] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 #> [97] 83 83 83 83 83 83 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 #> [121] 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 #> [145] 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 #> [169] 80 80 80 80 80 80 80 80 80 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 #> [193] 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 #> [217] 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 #> [241] 75 75 75 75 75 75 75 75 75 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 #> [265] 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 #> [289] 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 #> [313] 79 79 79 79 79 79 79 79 79 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 #> [337] 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 #> [361] 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 #> [385] 78 78 78 78 78 78 78 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 #> [409] 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 #> [433] 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 #> [457] 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 #> [481] 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 #> [505] 82 82 82 82 82 82 82 82 82 82 82 82 82 82 86 86 86 86 86 86 86 86 86 86 #> [529] 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 #> [553] 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 #> [577] 86 86 86 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 #> [601] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 #> [625] 81 81 81 81 81 81 81 81 81 81 81 81 81 87 87 87 87 87 87 87 87 87 87 87 #> [649] 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 #> [673] 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 74 74 #> [697] 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 #> [721] 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 #> [745] 74 74 74 74 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 #> [769] 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 #> [793] 73 73 73 73 73 73 73 73 73 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 #> [817] 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 #> [841] 77 77 77 77 77 77 77 77 77 77 77 77 77 67 67 67 67 67 67 67 67 67 67 67 #> [865] 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 #> [889] 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 88 88 88 88 88 88 88 88 #> [913] 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 #> [937] 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 70 70 70 70 70 #> [961] 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 #> [985] 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 69 69 69 #> [1009] 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 #> [1033] 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 71 71 #> [1057] 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 #> [1081] 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 72 72 72 #> [1105] 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 #> [1129] 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 65 65 65 65 65 65 #> [1153] 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 #> [1177] 65 65 65 65 65 65 65 65 65 65 65 65 65 66 66 66 66 66 66 66 66 66 66 66 #> [1201] 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 #> [1225] 66 66 66 66 66 66 66 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 #> [1249] 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 #> [1273] 85 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 #> [1297] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 47 47 47 47 47 47 #> [1321] 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 #> [1345] 47 47 47 47 47 47 47 47 47 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 #> [1369] 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89 89 89 89 #> [1393] 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 #> [1417] 89 89 89 89 89 89 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 #> [1441] 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 62 62 62 62 62 62 62 62 62 #> [1465] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 59 #> [1489] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 #> [1513] 59 59 59 59 59 59 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 #> [1537] 64 64 64 64 64 64 64 64 64 64 64 64 64 57 57 57 57 57 57 57 57 57 57 57 #> [1561] 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 63 63 63 63 63 63 #> [1585] 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 51 51 #> [1609] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 #> [1633] 51 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 #> [1657] 52 52 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 #> [1681] 60 60 60 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 #> [1705] 53 53 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 #> [1729] 58 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 56 #> [1753] 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 45 45 45 45 #> [1777] 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 55 55 55 55 55 55 55 55 #> [1801] 55 55 55 55 55 55 55 55 55 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 #> [1825] 61 61 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 43 43 43 43 43 43 #> [1849] 43 43 43 43 43 43 43 43 43 44 44 44 44 44 44 44 44 44 44 44 44 44 46 46 #> [1873] 46 46 46 46 46 46 46 46 46 46 46 41 41 41 41 41 41 41 41 41 41 48 48 48 #> [1897] 48 48 48 48 48 48 48 30 30 30 30 30 30 30 30 30 54 54 54 54 54 54 54 54 #> [1921] 54 92 92 92 92 92 92 92 92 92 91 91 91 91 91 91 91 91 42 42 42 42 42 42 #> [1945] 42 38 38 38 38 38 38 94 94 94 94 94 94 20 20 20 20 39 39 39 39 49 49 49 #> [1969] 49 19 19 19 29 29 29 33 33 33 37 37 37 40 40 40 18 18 24 24 31 31 36 36 #> [1993] 97 97 14 22 32 34 35 95identical(septic_patients %>% freq(age) %>% as.vector() %>% sort(), sort(septic_patients$age)) # TRUE#> [1] TRUE# it also supports `table` objects table(septic_patients$gender, septic_patients$age) %>% freq(sep = " **sep** ")#> #> #> **Frequency table of a `table` object** #> #> #> | |Item | Count| Percent| Cum. Count| Cum. Percent| #> |:---|:------------|-----:|-------:|----------:|------------:| #> |1 |F **sep** 83 | 55| 2.8%| 55| 2.8%| #> |2 |M **sep** 78 | 51| 2.6%| 106| 5.3%| #> |3 |M **sep** 83 | 47| 2.4%| 153| 7.7%| #> |4 |M **sep** 82 | 43| 2.2%| 196| 9.8%| #> |5 |M **sep** 79 | 42| 2.1%| 238| 11.9%| #> |6 |F **sep** 80 | 41| 2.1%| 279| 14.0%| #> |7 |F **sep** 76 | 39| 2.0%| 318| 15.9%| #> |8 |F **sep** 75 | 38| 1.9%| 356| 17.8%| #> |9 |F **sep** 86 | 38| 1.9%| 394| 19.7%| #> |10 |M **sep** 71 | 35| 1.8%| 429| 21.5%| #> |11 |M **sep** 75 | 34| 1.7%| 463| 23.2%| #> |12 |M **sep** 77 | 34| 1.7%| 497| 24.9%| #> |13 |M **sep** 80 | 34| 1.7%| 531| 26.6%| #> |14 |F **sep** 81 | 33| 1.7%| 564| 28.2%| #> |15 |M **sep** 88 | 31| 1.6%| 595| 29.8%| #> |16 |F **sep** 79 | 30| 1.5%| 625| 31.3%| #> |17 |M **sep** 74 | 30| 1.5%| 655| 32.8%| #> |18 |M **sep** 87 | 30| 1.5%| 685| 34.3%| #> |19 |F **sep** 65 | 29| 1.5%| 714| 35.7%| #> |20 |M **sep** 73 | 29| 1.5%| 743| 37.2%| #> |21 |M **sep** 69 | 28| 1.4%| 771| 38.6%| #> |22 |M **sep** 72 | 28| 1.4%| 799| 40.0%| #> |23 |F **sep** 67 | 27| 1.4%| 826| 41.3%| #> |24 |F **sep** 87 | 27| 1.4%| 853| 42.7%| #> |25 |M **sep** 76 | 26| 1.3%| 879| 44.0%| #> |26 |F **sep** 66 | 25| 1.3%| 904| 45.2%| #> |27 |F **sep** 70 | 25| 1.3%| 929| 46.5%| #> |28 |M **sep** 70 | 25| 1.3%| 954| 47.7%| #> |29 |M **sep** 81 | 25| 1.3%| 979| 49.0%| #> |30 |F **sep** 47 | 24| 1.2%| 1,003| 50.1%| #> |31 |F **sep** 73 | 24| 1.2%| 1,027| 51.4%| #> |32 |F **sep** 74 | 24| 1.2%| 1,051| 52.6%| #> |33 |M **sep** 67 | 24| 1.2%| 1,075| 53.8%| #> |34 |M **sep** 86 | 23| 1.2%| 1,098| 54.9%| #> |35 |F **sep** 89 | 22| 1.1%| 1,120| 56.0%| #> |36 |M **sep** 68 | 22| 1.1%| 1,142| 57.1%| #> |37 |M **sep** 85 | 22| 1.1%| 1,164| 58.2%| #> |38 |F **sep** 69 | 21| 1.1%| 1,185| 59.3%| #> |39 |M **sep** 62 | 21| 1.1%| 1,206| 60.3%| #> |40 |F **sep** 85 | 20| 1.0%| 1,226| 61.3%| #> |41 |F **sep** 88 | 20| 1.0%| 1,246| 62.3%| #> |42 |F **sep** 90 | 20| 1.0%| 1,266| 63.3%| #> |43 |M **sep** 64 | 20| 1.0%| 1,286| 64.3%| #> |44 |F **sep** 68 | 19| 1.0%| 1,305| 65.3%| #> |45 |F **sep** 78 | 19| 1.0%| 1,324| 66.2%| #> |46 |F **sep** 82 | 19| 1.0%| 1,343| 67.2%| #> |47 |F **sep** 45 | 18| 0.9%| 1,361| 68.1%| #> |48 |F **sep** 60 | 18| 0.9%| 1,379| 69.0%| #> |49 |F **sep** 77 | 18| 0.9%| 1,397| 69.9%| #> |50 |F **sep** 84 | 18| 0.9%| 1,415| 70.8%| #> |51 |M **sep** 51 | 18| 0.9%| 1,433| 71.7%| #> |52 |M **sep** 52 | 18| 0.9%| 1,451| 72.6%| #> |53 |F **sep** 57 | 17| 0.9%| 1,468| 73.4%| #> |54 |F **sep** 72 | 17| 0.9%| 1,485| 74.3%| #> |55 |M **sep** 66 | 17| 0.9%| 1,502| 75.1%| #> |56 |F **sep** 58 | 16| 0.8%| 1,518| 75.9%| #> |57 |F **sep** 59 | 16| 0.8%| 1,534| 76.7%| #> |58 |M **sep** 56 | 16| 0.8%| 1,550| 77.5%| #> |59 |M **sep** 47 | 15| 0.8%| 1,565| 78.3%| #> |60 |M **sep** 59 | 15| 0.8%| 1,580| 79.0%| #> |61 |M **sep** 84 | 15| 0.8%| 1,595| 79.8%| #> |62 |M **sep** 90 | 15| 0.8%| 1,610| 80.5%| #> |63 |F **sep** 63 | 14| 0.7%| 1,624| 81.2%| #> |64 |M **sep** 53 | 14| 0.7%| 1,638| 81.9%| #> |65 |M **sep** 63 | 14| 0.7%| 1,652| 82.6%| #> |66 |M **sep** 65 | 14| 0.7%| 1,666| 83.3%| #> |67 |M **sep** 61 | 13| 0.7%| 1,679| 84.0%| #> |68 |F **sep** 50 | 12| 0.6%| 1,691| 84.6%| #> |69 |F **sep** 71 | 12| 0.6%| 1,703| 85.2%| #> |70 |M **sep** 57 | 12| 0.6%| 1,715| 85.8%| #> |71 |M **sep** 89 | 12| 0.6%| 1,727| 86.4%| #> |72 |M **sep** 93 | 12| 0.6%| 1,739| 87.0%| #> |73 |F **sep** 62 | 11| 0.6%| 1,750| 87.5%| #> |74 |F **sep** 64 | 11| 0.6%| 1,761| 88.1%| #> |75 |M **sep** 50 | 10| 0.5%| 1,771| 88.6%| #> |76 |F **sep** 43 | 9| 0.5%| 1,780| 89.0%| #> |77 |F **sep** 46 | 9| 0.5%| 1,789| 89.5%| #> |78 |F **sep** 51 | 9| 0.5%| 1,798| 89.9%| #> |79 |F **sep** 53 | 9| 0.5%| 1,807| 90.4%| #> |80 |F **sep** 55 | 9| 0.5%| 1,816| 90.8%| #> |81 |M **sep** 30 | 9| 0.5%| 1,825| 91.3%| #> |82 |F **sep** 44 | 8| 0.4%| 1,833| 91.7%| #> |83 |M **sep** 55 | 8| 0.4%| 1,841| 92.1%| #> |84 |F **sep** 41 | 7| 0.4%| 1,848| 92.4%| #> |85 |F **sep** 48 | 7| 0.4%| 1,855| 92.8%| #> |86 |F **sep** 52 | 7| 0.4%| 1,862| 93.1%| #> |87 |M **sep** 58 | 7| 0.4%| 1,869| 93.5%| #> |88 |M **sep** 60 | 7| 0.4%| 1,876| 93.8%| #> |89 |F **sep** 92 | 6| 0.3%| 1,882| 94.1%| #> |90 |M **sep** 43 | 6| 0.3%| 1,888| 94.4%| #> |91 |F **sep** 38 | 5| 0.3%| 1,893| 94.7%| #> |92 |F **sep** 42 | 5| 0.3%| 1,898| 94.9%| #> |93 |F **sep** 56 | 5| 0.3%| 1,903| 95.2%| #> |94 |M **sep** 44 | 5| 0.3%| 1,908| 95.4%| #> |95 |M **sep** 54 | 5| 0.3%| 1,913| 95.7%| #> |96 |F **sep** 20 | 4| 0.2%| 1,917| 95.9%| #> |97 |F **sep** 54 | 4| 0.2%| 1,921| 96.1%| #> |98 |F **sep** 61 | 4| 0.2%| 1,925| 96.3%| #> |99 |F **sep** 91 | 4| 0.2%| 1,929| 96.5%| #> |100 |F **sep** 93 | 4| 0.2%| 1,933| 96.7%| #> |101 |F **sep** 94 | 4| 0.2%| 1,937| 96.9%| #> |102 |M **sep** 46 | 4| 0.2%| 1,941| 97.1%| #> |103 |M **sep** 91 | 4| 0.2%| 1,945| 97.3%| #> |104 |F **sep** 39 | 3| 0.2%| 1,948| 97.4%| #> |105 |M **sep** 19 | 3| 0.2%| 1,951| 97.6%| #> |106 |M **sep** 33 | 3| 0.2%| 1,954| 97.7%| #> |107 |M **sep** 41 | 3| 0.2%| 1,957| 97.9%| #> |108 |M **sep** 48 | 3| 0.2%| 1,960| 98.0%| #> |109 |M **sep** 92 | 3| 0.2%| 1,963| 98.2%| #> |110 |F **sep** 31 | 2| 0.1%| 1,965| 98.3%| #> |111 |F **sep** 49 | 2| 0.1%| 1,967| 98.4%| #> |112 |M **sep** 18 | 2| 0.1%| 1,969| 98.5%| #> |113 |M **sep** 24 | 2| 0.1%| 1,971| 98.6%| #> |114 |M **sep** 29 | 2| 0.1%| 1,973| 98.7%| #> |115 |M **sep** 36 | 2| 0.1%| 1,975| 98.8%| #> |116 |M **sep** 37 | 2| 0.1%| 1,977| 98.9%| #> |117 |M **sep** 40 | 2| 0.1%| 1,979| 99.0%| #> |118 |M **sep** 42 | 2| 0.1%| 1,981| 99.1%| #> |119 |M **sep** 45 | 2| 0.1%| 1,983| 99.2%| #> |120 |M **sep** 49 | 2| 0.1%| 1,985| 99.3%| #> |121 |M **sep** 94 | 2| 0.1%| 1,987| 99.4%| #> |122 |M **sep** 97 | 2| 0.1%| 1,989| 99.5%| #> |123 |F **sep** 22 | 1| 0.1%| 1,990| 99.5%| #> |124 |F **sep** 29 | 1| 0.1%| 1,991| 99.6%| #> |125 |F **sep** 34 | 1| 0.1%| 1,992| 99.6%| #> |126 |F **sep** 35 | 1| 0.1%| 1,993| 99.7%| #> |127 |F **sep** 37 | 1| 0.1%| 1,994| 99.7%| #> |128 |F **sep** 40 | 1| 0.1%| 1,995| 99.8%| #> |129 |M **sep** 14 | 1| 0.1%| 1,996| 99.8%| #> |130 |M **sep** 32 | 1| 0.1%| 1,997| 99.9%| #> |131 |M **sep** 38 | 1| 0.1%| 1,998| 99.9%| #> |132 |M **sep** 39 | 1| 0.1%| 1,999| 100.0%| #> |133 |M **sep** 95 | 1| 0.1%| 2,000| 100.0%| #> #>#> #> #> **Frequency table of `hospital_id`** #> #> #> | |Item | Percent| #> |:--|:----|-------:| #> |1 |D | 38.1%| #> |2 |B | 33.2%| #> |3 |A | 16.1%| #> |4 |C | 12.7%| #> #>#> #> #> **Frequency table of `hospital_id`** #> #> #> | |Item | Percent| Cum. Percent| #> |:--|:----|-------:|------------:| #> |1 |D | 38.1%| 38.1%| #> |2 |B | 33.2%| 71.3%| #> |3 |A | 16.1%| 87.3%| #> |4 |C | 12.7%| 100.0%| #> #># check differences between frequency tables diff(freq(septic_patients$trim), freq(septic_patients$trsu))#> Differences between frequency tables #> #> |Item | Count #1| Count #2| Difference| Diff. percent| #> |:----|--------:|--------:|----------:|-------------:| #> |S | 918| 1392| +474| +51.6%| #> |R | 571| 361| -210| -36.8%| #> |I | 10| 6| -4| -40.0%|