Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 61 15 27  7 41 50 27 14 30 57 61 25 26 60 34 11 53 45  4  9  6 11 25 37 59
#>  [26] 14 63 44 23 23 36 48  5 14 46  2 33 33 60 39 62 57 52 52 56 34 66 22 57  5
#>  [51] 62 64 47 12  7 65  1 39 12 34 12 64 13 59 22  6 17 63 48 14 23 45 36 32  4
#>  [76] 34 24 50 42  8  3 14 53 45 21 55 21 53 52  6 35 19 43 48  6 55  3  5 29 21
#> [101] 22 47 38 65 30 51  8 54 62  2 40 28 11 45  8 31  4 63 53 14 57 57 62 45 57
#> [126]  9  3 52 31 53 40 51 49  8 52 36 18 54 20 11 10  7 59 18 43 63 63 51 16 49
#> [151] 12 10 48 33 43 50  1 58 33 43  8 42 66 56 44 13 60  7 40 41 34  8 45 13 12
#> [176] 55 43 45 18 33  1 32 62  9 34 57 42 30 57 36  4 42 24 28 35 42 28  4  3 43
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
#>  [13]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
#>  [25]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
#>  [37] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
#>  [49] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
#>  [61] FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
#>  [73] FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [85] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
#>  [97] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
#> [109] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE
#> [121] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
#> [133] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
#> [145] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
#> [157]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#> [169]  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
#> [181] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
#> [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 4 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-07-23 F35553     51 M      ICU      B_STPHY_AURS R     NA    S     R    
#> 2 2002-08-19 A49852     70 M      Clinical B_ESCHR_COLI R     NA    NA    NA   
#> 3 2002-07-21 955940     82 F      Clinical B_PSDMN_AERG R     NA    NA    R    
#> 4 2002-08-14 785317     51 F      ICU      B_ESCHR_COLI R     NA    NA    NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 D08278  2016-11-18 B         TRUE       
#>  2 4047F6  2005-01-19 A         FALSE      
#>  3 B66559  2007-11-28 A         FALSE      
#>  4 E35356  2003-06-11 A         TRUE       
#>  5 807228  2011-06-10 C         FALSE      
#>  6 966513  2013-11-12 B         FALSE      
#>  7 9C1B92  2008-01-25 A         FALSE      
#>  8 C56827  2004-12-05 B         FALSE      
#>  9 E95747  2008-06-30 C         FALSE      
#> 10 A76045  2015-10-06 A         TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [182]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 Outpatient 2016-11-18 D08278          1 TRUE       
#>  2 ICU        2005-01-19 4047F6          1 TRUE       
#>  3 ICU        2007-11-28 B66559          1 TRUE       
#>  4 ICU        2003-06-11 E35356          1 TRUE       
#>  5 Clinical   2011-06-10 807228          1 TRUE       
#>  6 Clinical   2013-11-12 966513          1 TRUE       
#>  7 Clinical   2008-01-25 9C1B92          1 TRUE       
#>  8 Clinical   2004-12-05 C56827          1 TRUE       
#>  9 Clinical   2008-06-30 E95747          1 TRUE       
#> 10 ICU        2015-10-06 A76045          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          111             14            55            74
#> 2 ICU                57             13            37            42
#> 3 Outpatient         14              9            14            14
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [187]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 D08278  B_ESCHR_COLI Outpatient TRUE        
#>  2 4047F6  B_ESCHR_COLI ICU        TRUE        
#>  3 B66559  B_ESCHR_COLI ICU        TRUE        
#>  4 E35356  B_STPHY_CONS ICU        TRUE        
#>  5 807228  B_STRPT_PNMN Clinical   TRUE        
#>  6 966513  B_STPHY_HMNS Clinical   TRUE        
#>  7 9C1B92  B_STPHY_CONS Clinical   TRUE        
#>  8 C56827  B_ESCHR_COLI Clinical   TRUE        
#>  9 E95747  B_KLBSL_PNMN Clinical   TRUE        
#> 10 A76045  B_ENTRC_FACM ICU        TRUE        
#> # … with 190 more rows
# }