1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-05 05:48:38 +02:00
AMR/R/tidymodels.R

263 lines
7.6 KiB
R

#' AMR Extensions for Tidymodels
#'
#' This family of functions allows using AMR-specific data types such as `<mic>` and `<sir>` inside `tidymodels` pipelines.
#' @inheritParams recipes::step_center
#' @details
#' You can read more in our online [AMR with tidymodels introduction](https://amr-for-r.org/articles/AMR_with_tidymodels.html).
#'
#' Tidyselect helpers include:
#' - [all_mic()] and [all_mic_predictors()] to select `<mic>` columns
#' - [all_sir()] and [all_sir_predictors()] to select `<sir>` columns
#'
#' Pre-processing pipeline steps include:
#' - [step_mic_log2()] to convert MIC columns to numeric (via `as.numeric()`) and apply a log2 transform, to be used with [all_mic_predictors()]
#' - [step_sir_numeric()] to convert SIR columns to numeric (via `as.numeric()`), to be used with [all_sir_predictors()]: `"S"` = 1, `"I"`/`"SDD"` = 2, `"R"` = 3. All other values are rendered `NA`. Keep this in mind for further processing, especially if the model does not allow for `NA` values.
#'
#' These steps integrate with `recipes::recipe()` and work like standard preprocessing steps. They are useful for preparing data for modelling, especially with classification models.
#' @seealso [recipes::recipe()], [as.mic()], [as.sir()]
#' @name amr-tidymodels
#' @keywords internal
#' @export
#' @examples
#' library(tidymodels)
#'
#' # The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
#' # Presence of ESBL genes was predicted based on raw MIC values.
#'
#'
#' # example data set in the AMR package
#' esbl_isolates
#'
#' # Prepare a binary outcome and convert to ordered factor
#' data <- esbl_isolates %>%
#' mutate(esbl = factor(esbl, levels = c(FALSE, TRUE), ordered = TRUE))
#'
#' # Split into training and testing sets
#' split <- initial_split(data)
#' training_data <- training(split)
#' testing_data <- testing(split)
#'
#' # Create and prep a recipe with MIC log2 transformation
#' mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
#' # Optionally remove non-predictive variables
#' remove_role(genus, old_role = "predictor") %>%
#' # Apply the log2 transformation to all MIC predictors
#' step_mic_log2(all_mic_predictors()) %>%
#' prep()
#'
#' # View prepped recipe
#' mic_recipe
#'
#' # Apply the recipe to training and testing data
#' out_training <- bake(mic_recipe, new_data = NULL)
#' out_testing <- bake(mic_recipe, new_data = testing_data)
#'
#' # Fit a logistic regression model
#' fitted <- logistic_reg(mode = "classification") %>%
#' set_engine("glm") %>%
#' fit(esbl ~ ., data = out_training)
#'
#' # Generate predictions on the test set
#' predictions <- predict(fitted, out_testing) %>%
#' bind_cols(out_testing)
#'
#' # Evaluate predictions using standard classification metrics
#' our_metrics <- metric_set(accuracy, kap, ppv, npv)
#' metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class)
#'
#' # Show performance:
#' # - negative predictive value (NPV) of ~98%
#' # - positive predictive value (PPV) of ~94%
#' metrics
all_mic <- function() {
x <- tidymodels_amr_select(levels(NA_mic_))
names(x)
}
#' @rdname amr-tidymodels
#' @export
all_mic_predictors <- function() {
x <- tidymodels_amr_select(levels(NA_mic_))
intersect(x, recipes::has_role("predictor"))
}
#' @rdname amr-tidymodels
#' @export
all_sir <- function() {
x <- tidymodels_amr_select(levels(NA_sir_))
names(x)
}
#' @rdname amr-tidymodels
#' @export
all_sir_predictors <- function() {
x <- tidymodels_amr_select(levels(NA_sir_))
intersect(x, recipes::has_role("predictor"))
}
#' @rdname amr-tidymodels
#' @export
step_mic_log2 <- function(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = recipes::rand_id("mic_log2")) {
recipes::add_step(
recipe,
step_mic_log2_new(
terms = rlang::enquos(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
step_mic_log2_new <- function(terms, role, trained, columns, skip, id) {
recipes::step(
subclass = "mic_log2",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::prep, step_mic_log2)
prep.step_mic_log2 <- function(x, training, info = NULL, ...) {
col_names <- recipes::recipes_eval_select(x$terms, training, info)
recipes::check_type(training[, col_names], types = "ordered")
step_mic_log2_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::bake, step_mic_log2)
bake.step_mic_log2 <- function(object, new_data, ...) {
recipes::check_new_data(object$columns, object, new_data)
for (col in object$columns) {
new_data[[col]] <- log2(as.numeric(as.mic(new_data[[col]])))
}
new_data
}
#' @export
print.step_mic_log2 <- function(x, width = max(20, options()$width - 35), ...) {
title <- "Log2 transformation of MIC columns"
recipes::print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_mic_log2)
tidy.step_mic_log2 <- function(x, ...) {
if (recipes::is_trained(x)) {
res <- tibble::tibble(terms = x$columns)
} else {
res <- tibble::tibble(terms = recipes::sel2char(x$terms))
}
res$id <- x$id
res
}
#' @rdname amr-tidymodels
#' @export
step_sir_numeric <- function(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = recipes::rand_id("sir_numeric")) {
recipes::add_step(
recipe,
step_sir_numeric_new(
terms = rlang::enquos(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
step_sir_numeric_new <- function(terms, role, trained, columns, skip, id) {
recipes::step(
subclass = "sir_numeric",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::prep, step_sir_numeric)
prep.step_sir_numeric <- function(x, training, info = NULL, ...) {
col_names <- recipes::recipes_eval_select(x$terms, training, info)
recipes::check_type(training[, col_names], types = "ordered")
step_sir_numeric_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::bake, step_sir_numeric)
bake.step_sir_numeric <- function(object, new_data, ...) {
recipes::check_new_data(object$columns, object, new_data)
for (col in object$columns) {
new_data[[col]] <- as.numeric(as.sir(new_data[[col]]))
}
new_data
}
#' @export
print.step_sir_numeric <- function(x, width = max(20, options()$width - 35), ...) {
title <- "Numeric transformation of SIR columns"
recipes::print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_sir_numeric)
tidy.step_sir_numeric <- function(x, ...) {
if (recipes::is_trained(x)) {
res <- tibble::tibble(terms = x$columns)
} else {
res <- tibble::tibble(terms = recipes::sel2char(x$terms))
}
res$id <- x$id
res
}
tidymodels_amr_select <- function(check_vector) {
df <- get_current_data()
ind <- which(
vapply(
FUN.VALUE = logical(1),
df,
function(x) all(x %in% c(check_vector, NA), na.rm = TRUE) & any(x %in% check_vector),
USE.NAMES = TRUE
),
useNames = TRUE
)
ind
}