mirror of https://github.com/msberends/AMR.git
132 lines
5.2 KiB
Plaintext
Executable File
132 lines
5.2 KiB
Plaintext
Executable File
---
|
|
title: "How to predict antimicrobial resistance"
|
|
author: "Matthijs S. Berends"
|
|
date: '`r format(Sys.Date(), "%d %B %Y")`'
|
|
output:
|
|
rmarkdown::html_vignette:
|
|
toc: true
|
|
vignette: >
|
|
%\VignetteIndexEntry{How to predict antimicrobial resistance}
|
|
%\VignetteEncoding{UTF-8}
|
|
%\VignetteEngine{knitr::rmarkdown}
|
|
editor_options:
|
|
chunk_output_type: console
|
|
---
|
|
|
|
```{r setup, include = FALSE, results = 'markup'}
|
|
knitr::opts_chunk$set(
|
|
collapse = TRUE,
|
|
comment = "#",
|
|
fig.width = 7.5,
|
|
fig.height = 4.75
|
|
)
|
|
```
|
|
|
|
## Needed R packages
|
|
As with many uses in R, we need some additional packages for AMR analysis. Our package works closely together with the [tidyverse packages](https://www.tidyverse.org) [`dplyr`](https://dplyr.tidyverse.org/) and [`ggplot2`](https://ggplot2.tidyverse.org) by Dr Hadley Wickham. The tidyverse tremendously improves the way we conduct data science - it allows for a very natural way of writing syntaxes and creating beautiful plots in R.
|
|
|
|
Our `AMR` package depends on these packages and even extends their use and functions.
|
|
|
|
```{r lib packages, message = FALSE}
|
|
library(dplyr)
|
|
library(ggplot2)
|
|
library(AMR)
|
|
|
|
# (if not yet installed, install with:)
|
|
# install.packages(c("tidyverse", "AMR"))
|
|
```
|
|
|
|
## Prediction analysis
|
|
Our package contains a function `resistance_predict()`, which takes the same input as functions for [other AMR analysis](./AMR.html). Based on a date column, it calculates cases per year and uses a regression model to predict antimicrobial resistance.
|
|
|
|
It is basically as easy as:
|
|
```{r, eval = FALSE}
|
|
# resistance prediction of piperacillin/tazobactam (TZP):
|
|
resistance_predict(tbl = example_isolates, col_date = "date", col_ab = "TZP", model = "binomial")
|
|
|
|
# or:
|
|
example_isolates %>%
|
|
resistance_predict(col_ab = "TZP",
|
|
model "binomial")
|
|
|
|
# to bind it to object 'predict_TZP' for example:
|
|
predict_TZP <- example_isolates %>%
|
|
resistance_predict(col_ab = "TZP",
|
|
model = "binomial")
|
|
```
|
|
|
|
The function will look for a date column itself if `col_date` is not set.
|
|
|
|
When running any of these commands, a summary of the regression model will be printed unless using `resistance_predict(..., info = FALSE)`.
|
|
|
|
```{r, echo = FALSE}
|
|
predict_TZP <- example_isolates %>%
|
|
resistance_predict(col_ab = "TZP", model = "binomial")
|
|
```
|
|
|
|
This text is only a printed summary - the actual result (output) of the function is a `data.frame` containing for each year: the number of observations, the actual observed resistance, the estimated resistance and the standard error below and above the estimation:
|
|
|
|
```{r}
|
|
predict_TZP
|
|
```
|
|
|
|
The function `plot` is available in base R, and can be extended by other packages to depend the output based on the type of input. We extended its function to cope with resistance predictions:
|
|
|
|
```{r, fig.height = 5.5}
|
|
plot(predict_TZP)
|
|
```
|
|
|
|
This is the fastest way to plot the result. It automatically adds the right axes, error bars, titles, number of available observations and type of model.
|
|
|
|
We also support the `ggplot2` package with our custom function `ggplot_rsi_predict()` to create more appealing plots:
|
|
|
|
```{r}
|
|
ggplot_rsi_predict(predict_TZP)
|
|
|
|
# choose for error bars instead of a ribbon
|
|
ggplot_rsi_predict(predict_TZP, ribbon = FALSE)
|
|
```
|
|
|
|
### Choosing the right model
|
|
|
|
Resistance is not easily predicted; if we look at vancomycin resistance in Gram positives, the spread (i.e. standard error) is enormous:
|
|
|
|
```{r}
|
|
example_isolates %>%
|
|
filter(mo_gramstain(mo, language = NULL) == "Gram-positive") %>%
|
|
resistance_predict(col_ab = "VAN", year_min = 2010, info = FALSE, model = "binomial") %>%
|
|
ggplot_rsi_predict()
|
|
```
|
|
|
|
Vancomycin resistance could be 100% in ten years, but might also stay around 0%.
|
|
|
|
You can define the model with the `model` parameter. The model chosen above is a generalised linear regression model using a binomial distribution, assuming that a period of zero resistance was followed by a period of increasing resistance leading slowly to more and more resistance.
|
|
|
|
Valid values are:
|
|
|
|
| Input values | Function used by R | Type of model |
|
|
|----------------------------------------|-------------------------------|-----------------------------------------------------|
|
|
| `"binomial"` or `"binom"` or `"logit"` | `glm(..., family = binomial)` | Generalised linear model with binomial distribution |
|
|
| `"loglin"` or `"poisson"` | `glm(..., family = poisson)` | Generalised linear model with poisson distribution |
|
|
| `"lin"` or `"linear"` | `lm()` | Linear model |
|
|
|
|
For the vancomycin resistance in Gram positive bacteria, a linear model might be more appropriate since no (left half of a) binomial distribution is to be expected based on the observed years:
|
|
|
|
```{r}
|
|
example_isolates %>%
|
|
filter(mo_gramstain(mo, language = NULL) == "Gram-positive") %>%
|
|
resistance_predict(col_ab = "VAN", year_min = 2010, info = FALSE, model = "linear") %>%
|
|
ggplot_rsi_predict()
|
|
```
|
|
|
|
This seems more likely, doesn't it?
|
|
|
|
The model itself is also available from the object, as an `attribute`:
|
|
```{r}
|
|
model <- attributes(predict_TZP)$model
|
|
|
|
summary(model)$family
|
|
|
|
summary(model)$coefficients
|
|
```
|