1
0
mirror of https://github.com/msberends/AMR.git synced 2024-12-27 10:46:12 +01:00
AMR/docs/reference/ggplot_pca.html

325 lines
21 KiB
HTML

<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>PCA Biplot with ggplot2 — ggplot_pca • AMR (for R)</title><!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png"><link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png"><link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png"><link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png"><link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png"><link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png"><!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://cdnjs.cloudflare.com/ajax/libs/bootswatch/3.4.0/flatly/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous"><script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"><script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"><script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet"><script src="../extra.js"></script><meta property="og:title" content="PCA Biplot with ggplot2 — ggplot_pca"><meta property="og:description" content="Produces a ggplot2 variant of a so-called biplot for PCA (principal component analysis), but is more flexible and more appealing than the base R biplot() function."><meta property="og:image" content="https://msberends.github.io/AMR/logo.svg"><meta name="twitter:card" content="summary_large_image"><meta name="twitter:creator" content="@msberends"><meta name="twitter:site" content="@univgroningen"><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]--></head><body data-spy="scroll" data-target="#toc">
<div class="container template-reference-topic">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.8.1</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav"><li>
<a href="../index.html">
<span class="fa fa-home"></span>
Home
</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
<span class="fa fa-question-circle"></span>
How to
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu"><li>
<a href="../articles/AMR.html">
<span class="fa fa-directions"></span>
Conduct AMR analysis
</a>
</li>
<li>
<a href="../articles/resistance_predict.html">
<span class="fa fa-dice"></span>
Predict antimicrobial resistance
</a>
</li>
<li>
<a href="../articles/datasets.html">
<span class="fa fa-database"></span>
Data sets for download / own use
</a>
</li>
<li>
<a href="../articles/PCA.html">
<span class="fa fa-compress"></span>
Conduct principal component analysis for AMR
</a>
</li>
<li>
<a href="../articles/MDR.html">
<span class="fa fa-skull-crossbones"></span>
Determine multi-drug resistance (MDR)
</a>
</li>
<li>
<a href="../articles/WHONET.html">
<span class="fa fa-globe-americas"></span>
Work with WHONET data
</a>
</li>
<li>
<a href="../articles/SPSS.html">
<span class="fa fa-file-upload"></span>
Import data from SPSS/SAS/Stata
</a>
</li>
<li>
<a href="../articles/EUCAST.html">
<span class="fa fa-exchange-alt"></span>
Apply EUCAST rules
</a>
</li>
<li>
<a href="../reference/mo_property.html">
<span class="fa fa-bug"></span>
Get properties of a microorganism
</a>
</li>
<li>
<a href="../reference/ab_property.html">
<span class="fa fa-capsules"></span>
Get properties of an antibiotic
</a>
</li>
<li>
<a href="../articles/benchmarks.html">
<span class="fa fa-shipping-fast"></span>
Other: benchmarks
</a>
</li>
</ul></li>
<li>
<a href="../reference/index.html">
<span class="fa fa-book-open"></span>
Manual
</a>
</li>
<li>
<a href="../authors.html">
<span class="fa fa-users"></span>
Authors
</a>
</li>
<li>
<a href="../news/index.html">
<span class="far fa-newspaper"></span>
Changelog
</a>
</li>
</ul><ul class="nav navbar-nav navbar-right"><li>
<a href="https://github.com/msberends/AMR" class="external-link">
<span class="fab fa-github"></span>
Source Code
</a>
</li>
</ul></div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header><div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>PCA Biplot with <code>ggplot2</code></h1>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/HEAD/R/ggplot_pca.R" class="external-link"><code>R/ggplot_pca.R</code></a></small>
<div class="hidden name"><code>ggplot_pca.Rd</code></div>
</div>
<div class="ref-description">
<p>Produces a <code>ggplot2</code> variant of a so-called <a href="https://en.wikipedia.org/wiki/Biplot" class="external-link">biplot</a> for PCA (principal component analysis), but is more flexible and more appealing than the base <span style="R">R</span> <code><a href="https://rdrr.io/r/stats/biplot.html" class="external-link">biplot()</a></code> function.</p>
</div>
<div id="ref-usage">
<div class="sourceCode"><pre class="sourceCode r"><code><span class="fu">ggplot_pca</span><span class="op">(</span>
<span class="va">x</span>,
choices <span class="op">=</span> <span class="fl">1</span><span class="op">:</span><span class="fl">2</span>,
scale <span class="op">=</span> <span class="fl">1</span>,
pc.biplot <span class="op">=</span> <span class="cn">TRUE</span>,
labels <span class="op">=</span> <span class="cn">NULL</span>,
labels_textsize <span class="op">=</span> <span class="fl">3</span>,
labels_text_placement <span class="op">=</span> <span class="fl">1.5</span>,
groups <span class="op">=</span> <span class="cn">NULL</span>,
ellipse <span class="op">=</span> <span class="cn">TRUE</span>,
ellipse_prob <span class="op">=</span> <span class="fl">0.68</span>,
ellipse_size <span class="op">=</span> <span class="fl">0.5</span>,
ellipse_alpha <span class="op">=</span> <span class="fl">0.5</span>,
points_size <span class="op">=</span> <span class="fl">2</span>,
points_alpha <span class="op">=</span> <span class="fl">0.25</span>,
arrows <span class="op">=</span> <span class="cn">TRUE</span>,
arrows_colour <span class="op">=</span> <span class="st">"darkblue"</span>,
arrows_size <span class="op">=</span> <span class="fl">0.5</span>,
arrows_textsize <span class="op">=</span> <span class="fl">3</span>,
arrows_textangled <span class="op">=</span> <span class="cn">TRUE</span>,
arrows_alpha <span class="op">=</span> <span class="fl">0.75</span>,
base_textsize <span class="op">=</span> <span class="fl">10</span>,
<span class="va">...</span>
<span class="op">)</span></code></pre></div>
</div>
<div id="source">
<h2>Source</h2>
<p>The <code>ggplot_pca()</code> function is based on the <code>ggbiplot()</code> function from the <code>ggbiplot</code> package by Vince Vu, as found on GitHub: <a href="https://github.com/vqv/ggbiplot" class="external-link">https://github.com/vqv/ggbiplot</a> (retrieved: 2 March 2020, their latest commit: <a href="https://github.com/vqv/ggbiplot/commit/7325e880485bea4c07465a0304c470608fffb5d9" class="external-link"><code>7325e88</code></a>; 12 February 2015).</p>
<p>As per their GPL-2 licence that demands documentation of code changes, the changes made based on the source code were:</p><ol><li><p>Rewritten code to remove the dependency on packages <code>plyr</code>, <code>scales</code> and <code>grid</code></p></li>
<li><p>Parametrised more options, like arrow and ellipse settings</p></li>
<li><p>Hardened all input possibilities by defining the exact type of user input for every argument</p></li>
<li><p>Added total amount of explained variance as a caption in the plot</p></li>
<li><p>Cleaned all syntax based on the <code>lintr</code> package, fixed grammatical errors and added integrity checks</p></li>
<li><p>Updated documentation</p></li>
</ol></div>
<div id="arguments">
<h2>Arguments</h2>
<dl><dt>x</dt>
<dd><p>an object returned by <code><a href="pca.html">pca()</a></code>, <code><a href="https://rdrr.io/r/stats/prcomp.html" class="external-link">prcomp()</a></code> or <code><a href="https://rdrr.io/r/stats/princomp.html" class="external-link">princomp()</a></code></p></dd>
<dt>choices</dt>
<dd><p>length 2 vector specifying the components to plot. Only the default
is a biplot in the strict sense.</p></dd>
<dt>scale</dt>
<dd><p>The variables are scaled by <code>lambda ^ scale</code> and the
observations are scaled by <code>lambda ^ (1-scale)</code> where
<code>lambda</code> are the singular values as computed by
<code><a href="https://rdrr.io/r/stats/princomp.html" class="external-link">princomp</a></code>. Normally <code>0 &lt;= scale &lt;= 1</code>, and a warning
will be issued if the specified <code>scale</code> is outside this range.</p></dd>
<dt>pc.biplot</dt>
<dd><p>If true, use what Gabriel (1971) refers to as a "principal component
biplot", with <code>lambda = 1</code> and observations scaled up by sqrt(n) and
variables scaled down by sqrt(n). Then inner products between
variables approximate covariances and distances between observations
approximate Mahalanobis distance.</p></dd>
<dt>labels</dt>
<dd><p>an optional vector of labels for the observations. If set, the labels will be placed below their respective points. When using the <code><a href="pca.html">pca()</a></code> function as input for <code>x</code>, this will be determined automatically based on the attribute <code>non_numeric_cols</code>, see <code><a href="pca.html">pca()</a></code>.</p></dd>
<dt>labels_textsize</dt>
<dd><p>the size of the text used for the labels</p></dd>
<dt>labels_text_placement</dt>
<dd><p>adjustment factor the placement of the variable names (<code>&gt;=1</code> means further away from the arrow head)</p></dd>
<dt>groups</dt>
<dd><p>an optional vector of groups for the labels, with the same length as <code>labels</code>. If set, the points and labels will be coloured according to these groups. When using the <code><a href="pca.html">pca()</a></code> function as input for <code>x</code>, this will be determined automatically based on the attribute <code>non_numeric_cols</code>, see <code><a href="pca.html">pca()</a></code>.</p></dd>
<dt>ellipse</dt>
<dd><p>a <a href="https://rdrr.io/r/base/logical.html" class="external-link">logical</a> to indicate whether a normal data ellipse should be drawn for each group (set with <code>groups</code>)</p></dd>
<dt>ellipse_prob</dt>
<dd><p>statistical size of the ellipse in normal probability</p></dd>
<dt>ellipse_size</dt>
<dd><p>the size of the ellipse line</p></dd>
<dt>ellipse_alpha</dt>
<dd><p>the alpha (transparency) of the ellipse line</p></dd>
<dt>points_size</dt>
<dd><p>the size of the points</p></dd>
<dt>points_alpha</dt>
<dd><p>the alpha (transparency) of the points</p></dd>
<dt>arrows</dt>
<dd><p>a <a href="https://rdrr.io/r/base/logical.html" class="external-link">logical</a> to indicate whether arrows should be drawn</p></dd>
<dt>arrows_colour</dt>
<dd><p>the colour of the arrow and their text</p></dd>
<dt>arrows_size</dt>
<dd><p>the size (thickness) of the arrow lines</p></dd>
<dt>arrows_textsize</dt>
<dd><p>the size of the text at the end of the arrows</p></dd>
<dt>arrows_textangled</dt>
<dd><p>a <a href="https://rdrr.io/r/base/logical.html" class="external-link">logical</a> whether the text at the end of the arrows should be angled</p></dd>
<dt>arrows_alpha</dt>
<dd><p>the alpha (transparency) of the arrows and their text</p></dd>
<dt>base_textsize</dt>
<dd><p>the text size for all plot elements except the labels and arrows</p></dd>
<dt>...</dt>
<dd><p>arguments passed on to functions</p></dd>
</dl></div>
<div id="details">
<h2>Details</h2>
<p>The colours for labels and points can be changed by adding another scale layer for colour, such as <code><a href="https://ggplot2.tidyverse.org/reference/scale_viridis.html" class="external-link">scale_colour_viridis_d()</a></code> and <code><a href="https://ggplot2.tidyverse.org/reference/scale_brewer.html" class="external-link">scale_colour_brewer()</a></code>.</p>
</div>
<div id="stable-lifecycle">
<h2>Stable Lifecycle</h2>
<p><img src="figures/lifecycle_stable.svg" style='margin-bottom:"5"'><br>
The <a href="lifecycle.html">lifecycle</a> of this function is <strong>stable</strong>. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.</p>
<p>If the unlying code needs breaking changes, they will occur gradually. For example, an argument will be deprecated and first continue to work, but will emit a message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.</p>
</div>
<div id="ref-examples">
<h2>Examples</h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span class="co"># `example_isolates` is a data set available in the AMR package.</span>
<span class="co"># See ?example_isolates.</span>
<span class="co"># See ?pca for more info about Principal Component Analysis (PCA).</span>
<span class="co"># \donttest{</span>
<span class="kw">if</span> <span class="op">(</span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">require</a></span><span class="op">(</span><span class="st"><a href="https://dplyr.tidyverse.org" class="external-link">"dplyr"</a></span><span class="op">)</span><span class="op">)</span> <span class="op">{</span>
<span class="va">pca_model</span> <span class="op">&lt;-</span> <span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="fu"><a href="mo_property.html">mo_genus</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span> <span class="op">==</span> <span class="st">"Staphylococcus"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/group_by.html" class="external-link">group_by</a></span><span class="op">(</span>species <span class="op">=</span> <span class="fu"><a href="mo_property.html">mo_shortname</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/summarise_all.html" class="external-link">summarise_if</a></span> <span class="op">(</span><span class="va">is.rsi</span>, <span class="va">resistance</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span>
<span class="fu"><a href="pca.html">pca</a></span><span class="op">(</span><span class="va">FLC</span>, <span class="va">AMC</span>, <span class="va">CXM</span>, <span class="va">GEN</span>, <span class="va">TOB</span>, <span class="va">TMP</span>, <span class="va">SXT</span>, <span class="va">CIP</span>, <span class="va">TEC</span>, <span class="va">TCY</span>, <span class="va">ERY</span><span class="op">)</span>
<span class="co"># old (base R)</span>
<span class="fu"><a href="https://rdrr.io/r/stats/biplot.html" class="external-link">biplot</a></span><span class="op">(</span><span class="va">pca_model</span><span class="op">)</span>
<span class="co"># new </span>
<span class="fu">ggplot_pca</span><span class="op">(</span><span class="va">pca_model</span><span class="op">)</span>
<span class="kw">if</span> <span class="op">(</span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">require</a></span><span class="op">(</span><span class="st"><a href="https://ggplot2.tidyverse.org" class="external-link">"ggplot2"</a></span><span class="op">)</span><span class="op">)</span> <span class="op">{</span>
<span class="fu">ggplot_pca</span><span class="op">(</span><span class="va">pca_model</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://ggplot2.tidyverse.org/reference/scale_viridis.html" class="external-link">scale_colour_viridis_d</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://ggplot2.tidyverse.org/reference/labs.html" class="external-link">labs</a></span><span class="op">(</span>title <span class="op">=</span> <span class="st">"Title here"</span><span class="op">)</span>
<span class="op">}</span>
<span class="op">}</span>
<span class="co"># }</span>
</code></pre></div>
</div>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top"><h2 data-toc-skip>Contents</h2>
</nav></div>
</div>
<footer><div class="copyright">
<p></p><p>Developed by Matthijs S. Berends, Christian F. Luz, Dennis Souverein,
Erwin E. A. Hassing.</p>
</div>
<div class="pkgdown">
<p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a>
2.0.2.</p>
</div>
</footer></div>
</body></html>