1
0
mirror of https://github.com/msberends/AMR.git synced 2025-04-15 22:30:33 +02:00
AMR/articles/AMR_with_tidymodels.html
2025-04-12 15:58:30 +00:00

708 lines
78 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<title>AMR with tidymodels • AMR (for R)</title>
<!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png">
<link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png">
<link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png">
<link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png">
<link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png">
<link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png">
<script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet">
<script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><link href="../deps/Lato-0.4.9/font.css" rel="stylesheet">
<link href="../deps/Fira_Code-0.4.9/font.css" rel="stylesheet">
<link href="../deps/font-awesome-6.5.2/css/all.min.css" rel="stylesheet">
<link href="../deps/font-awesome-6.5.2/css/v4-shims.min.css" rel="stylesheet">
<script src="../deps/headroom-0.11.0/headroom.min.js"></script><script src="../deps/headroom-0.11.0/jQuery.headroom.min.js"></script><script src="../deps/bootstrap-toc-1.0.1/bootstrap-toc.min.js"></script><script src="../deps/clipboard.js-2.0.11/clipboard.min.js"></script><script src="../deps/search-1.0.0/autocomplete.jquery.min.js"></script><script src="../deps/search-1.0.0/fuse.min.js"></script><script src="../deps/search-1.0.0/mark.min.js"></script><!-- pkgdown --><script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet">
<script src="../extra.js"></script><meta property="og:title" content="AMR with tidymodels">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script><script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous" onload="renderMathInElement(document.body);"></script>
</head>
<body>
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
<nav class="navbar navbar-expand-lg fixed-top bg-primary" data-bs-theme="dark" aria-label="Site navigation"><div class="container">
<a class="navbar-brand me-2" href="../index.html">AMR (for R)</a>
<small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">2.1.1.9236</small>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar" class="collapse navbar-collapse ms-3">
<ul class="navbar-nav me-auto">
<li class="active nav-item dropdown">
<button class="nav-link dropdown-toggle" type="button" id="dropdown-how-to" data-bs-toggle="dropdown" aria-expanded="false" aria-haspopup="true"><span class="fa fa-question-circle"></span> How to</button>
<ul class="dropdown-menu" aria-labelledby="dropdown-how-to">
<li><a class="dropdown-item" href="../articles/AMR.html"><span class="fa fa-directions"></span> Conduct AMR Analysis</a></li>
<li><a class="dropdown-item" href="../reference/antibiogram.html"><span class="fa fa-file-prescription"></span> Generate Antibiogram (Trad./Syndromic/WISCA)</a></li>
<li><a class="dropdown-item" href="../articles/AMR_with_tidymodels.html"><span class="fa fa-square-root-variable"></span> Use AMR for Predictive Modelling (tidymodels)</a></li>
<li><a class="dropdown-item" href="../articles/datasets.html"><span class="fa fa-database"></span> Download Data Sets for Own Use</a></li>
<li><a class="dropdown-item" href="../reference/AMR-options.html"><span class="fa fa-gear"></span> Set User- Or Team-specific Package Settings</a></li>
<li><a class="dropdown-item" href="../articles/PCA.html"><span class="fa fa-compress"></span> Conduct Principal Component Analysis for AMR</a></li>
<li><a class="dropdown-item" href="../articles/MDR.html"><span class="fa fa-skull-crossbones"></span> Determine Multi-Drug Resistance (MDR)</a></li>
<li><a class="dropdown-item" href="../articles/WHONET.html"><span class="fa fa-globe-americas"></span> Work with WHONET Data</a></li>
<li><a class="dropdown-item" href="../articles/EUCAST.html"><span class="fa fa-exchange-alt"></span> Apply EUCAST Rules</a></li>
<li><a class="dropdown-item" href="../reference/mo_property.html"><span class="fa fa-bug"></span> Get Taxonomy of a Microorganism</a></li>
<li><a class="dropdown-item" href="../reference/ab_property.html"><span class="fa fa-capsules"></span> Get Properties of an Antibiotic Drug</a></li>
<li><a class="dropdown-item" href="../reference/av_property.html"><span class="fa fa-capsules"></span> Get Properties of an Antiviral Drug</a></li>
</ul>
</li>
<li class="nav-item"><a class="nav-link" href="../articles/AMR_for_Python.html"><span class="fa fab fa-python"></span> AMR for Python</a></li>
<li class="nav-item"><a class="nav-link" href="../reference/index.html"><span class="fa fa-book-open"></span> Manual</a></li>
<li class="nav-item"><a class="nav-link" href="../authors.html"><span class="fa fa-users"></span> Authors</a></li>
</ul>
<ul class="navbar-nav">
<li class="nav-item"><form class="form-inline" role="search">
<input class="form-control" type="search" name="search-input" id="search-input" autocomplete="off" aria-label="Search site" placeholder="Search for" data-search-index="../search.json">
</form></li>
<li class="nav-item"><a class="nav-link" href="../news/index.html"><span class="fa fa-newspaper"></span> Changelog</a></li>
<li class="nav-item"><a class="external-link nav-link" href="https://github.com/msberends/AMR"><span class="fa fa-github"></span> Source Code</a></li>
</ul>
</div>
</div>
</nav><div class="container template-article">
<div class="row">
<main id="main" class="col-md-9"><div class="page-header">
<img src="../logo.svg" class="logo" alt=""><h1>AMR with tidymodels</h1>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/main/vignettes/AMR_with_tidymodels.Rmd" class="external-link"><code>vignettes/AMR_with_tidymodels.Rmd</code></a></small>
<div class="d-none name"><code>AMR_with_tidymodels.Rmd</code></div>
</div>
<blockquote>
<p>This page was entirely written by our <a href="https://chatgpt.com/g/g-M4UNLwFi5-amr-for-r-assistant" class="external-link">AMR for R
Assistant</a>, a ChatGPT manually-trained model able to answer any
question about the AMR package.</p>
</blockquote>
<p>Antimicrobial resistance (AMR) is a global health crisis, and
understanding resistance patterns is crucial for managing effective
treatments. The <code>AMR</code> R package provides robust tools for
analysing AMR data, including convenient antimicrobial selector
functions like <code><a href="../reference/antimicrobial_selectors.html">aminoglycosides()</a></code> and
<code><a href="../reference/antimicrobial_selectors.html">betalactams()</a></code>.</p>
<p>In this post, we will explore how to use the <code>tidymodels</code>
framework to predict resistance patterns in the
<code>example_isolates</code> dataset in two examples.</p>
<div class="section level2">
<h2 id="example-1-using-antimicrobial-selectors">Example 1: Using Antimicrobial Selectors<a class="anchor" aria-label="anchor" href="#example-1-using-antimicrobial-selectors"></a>
</h2>
<p>By leveraging the power of <code>tidymodels</code> and the
<code>AMR</code> package, well build a reproducible machine learning
workflow to predict the Gramstain of the microorganism to two important
antibiotic classes: aminoglycosides and beta-lactams.</p>
<div class="section level3">
<h3 id="objective">
<strong>Objective</strong><a class="anchor" aria-label="anchor" href="#objective"></a>
</h3>
<p>Our goal is to build a predictive model using the
<code>tidymodels</code> framework to determine the Gramstain of the
microorganism based on microbial data. We will:</p>
<ol style="list-style-type: decimal">
<li>Preprocess data using the selector functions
<code><a href="../reference/antimicrobial_selectors.html">aminoglycosides()</a></code> and <code><a href="../reference/antimicrobial_selectors.html">betalactams()</a></code>.</li>
<li>Define a logistic regression model for prediction.</li>
<li>Use a structured <code>tidymodels</code> workflow to preprocess,
train, and evaluate the model.</li>
</ol>
</div>
<div class="section level3">
<h3 id="data-preparation">
<strong>Data Preparation</strong><a class="anchor" aria-label="anchor" href="#data-preparation"></a>
</h3>
<p>We begin by loading the required libraries and preparing the
<code>example_isolates</code> dataset from the <code>AMR</code>
package.</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Load required libraries</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://amr-for-r.org">AMR</a></span><span class="op">)</span> <span class="co"># For AMR data analysis</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://tidymodels.tidymodels.org" class="external-link">tidymodels</a></span><span class="op">)</span> <span class="co"># For machine learning workflows, and data manipulation (dplyr, tidyr, ...)</span></span></code></pre></div>
<p>Prepare the data:</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Your data could look like this:</span></span>
<span><span class="va">example_isolates</span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># A tibble: 2,000 × 46</span></span></span>
<span><span class="co">#&gt; date patient age gender ward mo PEN OXA FLC AMX </span></span>
<span><span class="co">#&gt; <span style="color: #949494; font-style: italic;">&lt;date&gt;</span> <span style="color: #949494; font-style: italic;">&lt;chr&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; font-style: italic;">&lt;chr&gt;</span> <span style="color: #949494; font-style: italic;">&lt;chr&gt;</span> <span style="color: #949494; font-style: italic;">&lt;mo&gt;</span> <span style="color: #949494; font-style: italic;">&lt;sir&gt;</span> <span style="color: #949494; font-style: italic;">&lt;sir&gt;</span> <span style="color: #949494; font-style: italic;">&lt;sir&gt;</span> <span style="color: #949494; font-style: italic;">&lt;sir&gt;</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 1</span> 2002-01-02 A77334 65 F Clinical <span style="color: #949494;">B_</span>ESCHR<span style="color: #949494;">_</span>COLI <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #B2B2B2;"> NA</span> </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 2</span> 2002-01-03 A77334 65 F Clinical <span style="color: #949494;">B_</span>ESCHR<span style="color: #949494;">_</span>COLI <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #B2B2B2;"> NA</span> </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 3</span> 2002-01-07 067927 45 F ICU <span style="color: #949494;">B_</span>STPHY<span style="color: #949494;">_</span>EPDR <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 4</span> 2002-01-07 067927 45 F ICU <span style="color: #949494;">B_</span>STPHY<span style="color: #949494;">_</span>EPDR <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 5</span> 2002-01-13 067927 45 F ICU <span style="color: #949494;">B_</span>STPHY<span style="color: #949494;">_</span>EPDR <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 6</span> 2002-01-13 067927 45 F ICU <span style="color: #949494;">B_</span>STPHY<span style="color: #949494;">_</span>EPDR <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 7</span> 2002-01-14 462729 78 M Clinical <span style="color: #949494;">B_</span>STPHY<span style="color: #949494;">_</span>AURS <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #080808; background-color: #5FD7AF;"> S </span> <span style="color: #080808; background-color: #FFAFAF;"> R </span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 8</span> 2002-01-14 462729 78 M Clinical <span style="color: #949494;">B_</span>STPHY<span style="color: #949494;">_</span>AURS <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #080808; background-color: #5FD7AF;"> S </span> <span style="color: #080808; background-color: #FFAFAF;"> R </span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 9</span> 2002-01-16 067927 45 F ICU <span style="color: #949494;">B_</span>STPHY<span style="color: #949494;">_</span>EPDR <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">10</span> 2002-01-17 858515 79 F ICU <span style="color: #949494;">B_</span>STPHY<span style="color: #949494;">_</span>EPDR <span style="color: #080808; background-color: #FFAFAF;"> R </span> <span style="color: #B2B2B2;"> NA</span> <span style="color: #080808; background-color: #5FD7AF;"> S </span> <span style="color: #B2B2B2;"> NA</span> </span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># 1,990 more rows</span></span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># 36 more variables: AMC &lt;sir&gt;, AMP &lt;sir&gt;, TZP &lt;sir&gt;, CZO &lt;sir&gt;, FEP &lt;sir&gt;,</span></span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># CXM &lt;sir&gt;, FOX &lt;sir&gt;, CTX &lt;sir&gt;, CAZ &lt;sir&gt;, CRO &lt;sir&gt;, GEN &lt;sir&gt;,</span></span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># TOB &lt;sir&gt;, AMK &lt;sir&gt;, KAN &lt;sir&gt;, TMP &lt;sir&gt;, SXT &lt;sir&gt;, NIT &lt;sir&gt;,</span></span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># FOS &lt;sir&gt;, LNZ &lt;sir&gt;, CIP &lt;sir&gt;, MFX &lt;sir&gt;, VAN &lt;sir&gt;, TEC &lt;sir&gt;,</span></span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># TCY &lt;sir&gt;, TGC &lt;sir&gt;, DOX &lt;sir&gt;, ERY &lt;sir&gt;, CLI &lt;sir&gt;, AZM &lt;sir&gt;,</span></span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># IPM &lt;sir&gt;, MEM &lt;sir&gt;, MTR &lt;sir&gt;, CHL &lt;sir&gt;, COL &lt;sir&gt;, MUP &lt;sir&gt;, …</span></span></span>
<span></span>
<span><span class="co"># Select relevant columns for prediction</span></span>
<span><span class="va">data</span> <span class="op">&lt;-</span> <span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="co"># select AB results dynamically</span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/select.html" class="external-link">select</a></span><span class="op">(</span><span class="va">mo</span>, <span class="fu"><a href="../reference/antimicrobial_selectors.html">aminoglycosides</a></span><span class="op">(</span><span class="op">)</span>, <span class="fu"><a href="../reference/antimicrobial_selectors.html">betalactams</a></span><span class="op">(</span><span class="op">)</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="co"># replace NAs with NI (not-interpretable)</span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/mutate.html" class="external-link">mutate</a></span><span class="op">(</span><span class="fu"><a href="https://dplyr.tidyverse.org/reference/across.html" class="external-link">across</a></span><span class="op">(</span><span class="fu"><a href="https://tidyselect.r-lib.org/reference/where.html" class="external-link">where</a></span><span class="op">(</span><span class="va">is.sir</span><span class="op">)</span>,</span>
<span> <span class="op">~</span><span class="fu">replace_na</span><span class="op">(</span><span class="va">.x</span>, <span class="st">"NI"</span><span class="op">)</span><span class="op">)</span>,</span>
<span> <span class="co"># make factors of SIR columns</span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/across.html" class="external-link">across</a></span><span class="op">(</span><span class="fu"><a href="https://tidyselect.r-lib.org/reference/where.html" class="external-link">where</a></span><span class="op">(</span><span class="va">is.sir</span><span class="op">)</span>,</span>
<span> <span class="va">as.integer</span><span class="op">)</span>,</span>
<span> <span class="co"># get Gramstain of microorganisms</span></span>
<span> mo <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/factor.html" class="external-link">as.factor</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span><span class="op">)</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="co"># drop NAs - the ones without a Gramstain (fungi, etc.)</span></span>
<span> <span class="fu">drop_na</span><span class="op">(</span><span class="op">)</span></span>
<span><span class="co">#&gt; <span style="color: #0000BB;"> For </span><span style="color: #0000BB; background-color: #EEEEEE;">aminoglycosides()</span><span style="color: #0000BB;"> using columns '</span><span style="color: #0000BB; font-weight: bold;">GEN</span><span style="color: #0000BB;">' (gentamicin), '</span><span style="color: #0000BB; font-weight: bold;">TOB</span><span style="color: #0000BB;">'</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; (tobramycin), '</span><span style="color: #0000BB; font-weight: bold;">AMK</span><span style="color: #0000BB;">' (amikacin), and '</span><span style="color: #0000BB; font-weight: bold;">KAN</span><span style="color: #0000BB;">' (kanamycin)</span></span></span>
<span><span class="co">#&gt; <span style="color: #0000BB;"> For </span><span style="color: #0000BB; background-color: #EEEEEE;">betalactams()</span><span style="color: #0000BB;"> using columns '</span><span style="color: #0000BB; font-weight: bold;">PEN</span><span style="color: #0000BB;">' (benzylpenicillin), '</span><span style="color: #0000BB; font-weight: bold;">OXA</span><span style="color: #0000BB;">'</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; (oxacillin), '</span><span style="color: #0000BB; font-weight: bold;">FLC</span><span style="color: #0000BB;">' (flucloxacillin), '</span><span style="color: #0000BB; font-weight: bold;">AMX</span><span style="color: #0000BB;">' (amoxicillin), '</span><span style="color: #0000BB; font-weight: bold;">AMC</span><span style="color: #0000BB;">'</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; (amoxicillin/clavulanic acid), '</span><span style="color: #0000BB; font-weight: bold;">AMP</span><span style="color: #0000BB;">' (ampicillin), '</span><span style="color: #0000BB; font-weight: bold;">TZP</span><span style="color: #0000BB;">'</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; (piperacillin/tazobactam), '</span><span style="color: #0000BB; font-weight: bold;">CZO</span><span style="color: #0000BB;">' (cefazolin), '</span><span style="color: #0000BB; font-weight: bold;">FEP</span><span style="color: #0000BB;">' (cefepime), '</span><span style="color: #0000BB; font-weight: bold;">CXM</span><span style="color: #0000BB;">'</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; (cefuroxime), '</span><span style="color: #0000BB; font-weight: bold;">FOX</span><span style="color: #0000BB;">' (cefoxitin), '</span><span style="color: #0000BB; font-weight: bold;">CTX</span><span style="color: #0000BB;">' (cefotaxime), '</span><span style="color: #0000BB; font-weight: bold;">CAZ</span><span style="color: #0000BB;">' (ceftazidime),</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; '</span><span style="color: #0000BB; font-weight: bold;">CRO</span><span style="color: #0000BB;">' (ceftriaxone), '</span><span style="color: #0000BB; font-weight: bold;">IPM</span><span style="color: #0000BB;">' (imipenem), and '</span><span style="color: #0000BB; font-weight: bold;">MEM</span><span style="color: #0000BB;">' (meropenem)</span></span></span></code></pre></div>
<p><strong>Explanation:</strong></p>
<ul>
<li>
<code><a href="../reference/antimicrobial_selectors.html">aminoglycosides()</a></code> and <code><a href="../reference/antimicrobial_selectors.html">betalactams()</a></code>
dynamically select columns for antimicrobials in these classes.</li>
<li>
<code>drop_na()</code> ensures the model receives complete cases for
training.</li>
</ul>
</div>
<div class="section level3">
<h3 id="defining-the-workflow">
<strong>Defining the Workflow</strong><a class="anchor" aria-label="anchor" href="#defining-the-workflow"></a>
</h3>
<p>We now define the <code>tidymodels</code> workflow, which consists of
three steps: preprocessing, model specification, and fitting.</p>
<div class="section level4">
<h4 id="preprocessing-with-a-recipe">1. Preprocessing with a Recipe<a class="anchor" aria-label="anchor" href="#preprocessing-with-a-recipe"></a>
</h4>
<p>We create a recipe to preprocess the data for modelling.</p>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Define the recipe for data preprocessing</span></span>
<span><span class="va">resistance_recipe</span> <span class="op">&lt;-</span> <span class="fu">recipe</span><span class="op">(</span><span class="va">mo</span> <span class="op">~</span> <span class="va">.</span>, data <span class="op">=</span> <span class="va">data</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">step_corr</span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fu"><a href="../reference/antimicrobial_selectors.html">aminoglycosides</a></span><span class="op">(</span><span class="op">)</span>, <span class="fu"><a href="../reference/antimicrobial_selectors.html">betalactams</a></span><span class="op">(</span><span class="op">)</span><span class="op">)</span>, threshold <span class="op">=</span> <span class="fl">0.9</span><span class="op">)</span></span>
<span><span class="va">resistance_recipe</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; <span style="color: #00BBBB;">──</span> <span style="font-weight: bold;">Recipe</span> <span style="color: #00BBBB;">──────────────────────────────────────────────────────────────────────</span></span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; ── Inputs</span></span>
<span><span class="co">#&gt; Number of variables by role</span></span>
<span><span class="co">#&gt; outcome: 1</span></span>
<span><span class="co">#&gt; predictor: 20</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; ── Operations</span></span>
<span><span class="co">#&gt; <span style="color: #00BBBB;"></span> Correlation filter on: <span style="color: #0000BB;">c(aminoglycosides(), betalactams())</span></span></span></code></pre></div>
<p>For a recipe that includes at least one preprocessing operation, like
we have with <code>step_corr()</code>, the necessary parameters can be
estimated from a training set using <code>prep()</code>:</p>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu">prep</span><span class="op">(</span><span class="va">resistance_recipe</span><span class="op">)</span></span>
<span><span class="co">#&gt; <span style="color: #0000BB;"> For </span><span style="color: #0000BB; background-color: #EEEEEE;">aminoglycosides()</span><span style="color: #0000BB;"> using columns '</span><span style="color: #0000BB; font-weight: bold;">GEN</span><span style="color: #0000BB;">' (gentamicin), '</span><span style="color: #0000BB; font-weight: bold;">TOB</span><span style="color: #0000BB;">'</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; (tobramycin), '</span><span style="color: #0000BB; font-weight: bold;">AMK</span><span style="color: #0000BB;">' (amikacin), and '</span><span style="color: #0000BB; font-weight: bold;">KAN</span><span style="color: #0000BB;">' (kanamycin)</span></span></span>
<span><span class="co">#&gt; <span style="color: #0000BB;"> For </span><span style="color: #0000BB; background-color: #EEEEEE;">betalactams()</span><span style="color: #0000BB;"> using columns '</span><span style="color: #0000BB; font-weight: bold;">PEN</span><span style="color: #0000BB;">' (benzylpenicillin), '</span><span style="color: #0000BB; font-weight: bold;">OXA</span><span style="color: #0000BB;">'</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; (oxacillin), '</span><span style="color: #0000BB; font-weight: bold;">FLC</span><span style="color: #0000BB;">' (flucloxacillin), '</span><span style="color: #0000BB; font-weight: bold;">AMX</span><span style="color: #0000BB;">' (amoxicillin), '</span><span style="color: #0000BB; font-weight: bold;">AMC</span><span style="color: #0000BB;">'</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; (amoxicillin/clavulanic acid), '</span><span style="color: #0000BB; font-weight: bold;">AMP</span><span style="color: #0000BB;">' (ampicillin), '</span><span style="color: #0000BB; font-weight: bold;">TZP</span><span style="color: #0000BB;">'</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; (piperacillin/tazobactam), '</span><span style="color: #0000BB; font-weight: bold;">CZO</span><span style="color: #0000BB;">' (cefazolin), '</span><span style="color: #0000BB; font-weight: bold;">FEP</span><span style="color: #0000BB;">' (cefepime), '</span><span style="color: #0000BB; font-weight: bold;">CXM</span><span style="color: #0000BB;">'</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; (cefuroxime), '</span><span style="color: #0000BB; font-weight: bold;">FOX</span><span style="color: #0000BB;">' (cefoxitin), '</span><span style="color: #0000BB; font-weight: bold;">CTX</span><span style="color: #0000BB;">' (cefotaxime), '</span><span style="color: #0000BB; font-weight: bold;">CAZ</span><span style="color: #0000BB;">' (ceftazidime),</span></span></span>
<span><span class="co"><span style="color: #0000BB;">#&gt; '</span><span style="color: #0000BB; font-weight: bold;">CRO</span><span style="color: #0000BB;">' (ceftriaxone), '</span><span style="color: #0000BB; font-weight: bold;">IPM</span><span style="color: #0000BB;">' (imipenem), and '</span><span style="color: #0000BB; font-weight: bold;">MEM</span><span style="color: #0000BB;">' (meropenem)</span></span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; <span style="color: #00BBBB;">──</span> <span style="font-weight: bold;">Recipe</span> <span style="color: #00BBBB;">──────────────────────────────────────────────────────────────────────</span></span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; ── Inputs</span></span>
<span><span class="co">#&gt; Number of variables by role</span></span>
<span><span class="co">#&gt; outcome: 1</span></span>
<span><span class="co">#&gt; predictor: 20</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; ── Training information</span></span>
<span><span class="co">#&gt; Training data contained 1968 data points and no incomplete rows.</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; ── Operations</span></span>
<span><span class="co">#&gt; <span style="color: #00BBBB;"></span> Correlation filter on: <span style="color: #0000BB;">AMX</span> <span style="color: #0000BB;">CTX</span> | <span style="font-style: italic;">Trained</span></span></span></code></pre></div>
<p><strong>Explanation:</strong></p>
<ul>
<li>
<code>recipe(mo ~ ., data = data)</code> will take the
<code>mo</code> column as outcome and all other columns as
predictors.</li>
<li>
<code>step_corr()</code> removes predictors (i.e., antibiotic
columns) that have a higher correlation than 90%.</li>
</ul>
<p>Notice how the recipe contains just the antimicrobial selector
functions - no need to define the columns specifically. In the
preparation (retrieved with <code>prep()</code>) we can see that the
columns or variables AMX and CTX were removed as they correlate too
much with existing, other variables.</p>
</div>
<div class="section level4">
<h4 id="specifying-the-model">2. Specifying the Model<a class="anchor" aria-label="anchor" href="#specifying-the-model"></a>
</h4>
<p>We define a logistic regression model since resistance prediction is
a binary classification task.</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Specify a logistic regression model</span></span>
<span><span class="va">logistic_model</span> <span class="op">&lt;-</span> <span class="fu">logistic_reg</span><span class="op">(</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">set_engine</span><span class="op">(</span><span class="st">"glm"</span><span class="op">)</span> <span class="co"># Use the Generalised Linear Model engine</span></span>
<span><span class="va">logistic_model</span></span>
<span><span class="co">#&gt; Logistic Regression Model Specification (classification)</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; Computational engine: glm</span></span></code></pre></div>
<p><strong>Explanation:</strong></p>
<ul>
<li>
<code>logistic_reg()</code> sets up a logistic regression
model.</li>
<li>
<code>set_engine("glm")</code> specifies the use of Rs built-in GLM
engine.</li>
</ul>
</div>
<div class="section level4">
<h4 id="building-the-workflow">3. Building the Workflow<a class="anchor" aria-label="anchor" href="#building-the-workflow"></a>
</h4>
<p>We bundle the recipe and model together into a <code>workflow</code>,
which organises the entire modeling process.</p>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Combine the recipe and model into a workflow</span></span>
<span><span class="va">resistance_workflow</span> <span class="op">&lt;-</span> <span class="fu">workflow</span><span class="op">(</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">add_recipe</span><span class="op">(</span><span class="va">resistance_recipe</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span> <span class="co"># Add the preprocessing recipe</span></span>
<span> <span class="fu">add_model</span><span class="op">(</span><span class="va">logistic_model</span><span class="op">)</span> <span class="co"># Add the logistic regression model</span></span>
<span><span class="va">resistance_workflow</span></span>
<span><span class="co">#&gt; ══ Workflow ════════════════════════════════════════════════════════════════════</span></span>
<span><span class="co">#&gt; <span style="font-style: italic;">Preprocessor:</span> Recipe</span></span>
<span><span class="co">#&gt; <span style="font-style: italic;">Model:</span> logistic_reg()</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; ── Preprocessor ────────────────────────────────────────────────────────────────</span></span>
<span><span class="co">#&gt; 1 Recipe Step</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; • step_corr()</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; ── Model ───────────────────────────────────────────────────────────────────────</span></span>
<span><span class="co">#&gt; Logistic Regression Model Specification (classification)</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; Computational engine: glm</span></span></code></pre></div>
</div>
</div>
<div class="section level3">
<h3 id="training-and-evaluating-the-model">
<strong>Training and Evaluating the Model</strong><a class="anchor" aria-label="anchor" href="#training-and-evaluating-the-model"></a>
</h3>
<p>To train the model, we split the data into training and testing sets.
Then, we fit the workflow on the training set and evaluate its
performance.</p>
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Split data into training and testing sets</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/Random.html" class="external-link">set.seed</a></span><span class="op">(</span><span class="fl">123</span><span class="op">)</span> <span class="co"># For reproducibility</span></span>
<span><span class="va">data_split</span> <span class="op">&lt;-</span> <span class="fu">initial_split</span><span class="op">(</span><span class="va">data</span>, prop <span class="op">=</span> <span class="fl">0.8</span><span class="op">)</span> <span class="co"># 80% training, 20% testing</span></span>
<span><span class="va">training_data</span> <span class="op">&lt;-</span> <span class="fu">training</span><span class="op">(</span><span class="va">data_split</span><span class="op">)</span> <span class="co"># Training set</span></span>
<span><span class="va">testing_data</span> <span class="op">&lt;-</span> <span class="fu">testing</span><span class="op">(</span><span class="va">data_split</span><span class="op">)</span> <span class="co"># Testing set</span></span>
<span></span>
<span><span class="co"># Fit the workflow to the training data</span></span>
<span><span class="va">fitted_workflow</span> <span class="op">&lt;-</span> <span class="va">resistance_workflow</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">fit</span><span class="op">(</span><span class="va">training_data</span><span class="op">)</span> <span class="co"># Train the model</span></span></code></pre></div>
<p><strong>Explanation:</strong></p>
<ul>
<li>
<code>initial_split()</code> splits the data into training and
testing sets.</li>
<li>
<code>fit()</code> trains the workflow on the training set.</li>
</ul>
<p>Notice how in <code>fit()</code>, the antimicrobial selector
functions are internally called again. For training, these functions are
called since they are stored in the recipe.</p>
<p>Next, we evaluate the model on the testing data.</p>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Make predictions on the testing set</span></span>
<span><span class="va">predictions</span> <span class="op">&lt;-</span> <span class="va">fitted_workflow</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict</a></span><span class="op">(</span><span class="va">testing_data</span><span class="op">)</span> <span class="co"># Generate predictions</span></span>
<span><span class="va">probabilities</span> <span class="op">&lt;-</span> <span class="va">fitted_workflow</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict</a></span><span class="op">(</span><span class="va">testing_data</span>, type <span class="op">=</span> <span class="st">"prob"</span><span class="op">)</span> <span class="co"># Generate probabilities</span></span>
<span></span>
<span><span class="va">predictions</span> <span class="op">&lt;-</span> <span class="va">predictions</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/bind_cols.html" class="external-link">bind_cols</a></span><span class="op">(</span><span class="va">probabilities</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/bind_cols.html" class="external-link">bind_cols</a></span><span class="op">(</span><span class="va">testing_data</span><span class="op">)</span> <span class="co"># Combine with true labels</span></span>
<span></span>
<span><span class="va">predictions</span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># A tibble: 394 × 24</span></span></span>
<span><span class="co">#&gt; .pred_class `.pred_Gram-negative` `.pred_Gram-positive` mo GEN TOB</span></span>
<span><span class="co">#&gt; <span style="color: #949494; font-style: italic;">&lt;fct&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; font-style: italic;">&lt;fct&gt;</span> <span style="color: #949494; font-style: italic;">&lt;int&gt;</span> <span style="color: #949494; font-style: italic;">&lt;int&gt;</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 1</span> Gram-positive 1.07<span style="color: #949494;">e</span><span style="color: #BB0000;">- 1</span> 8.93<span style="color: #949494;">e</span><span style="color: #BB0000;">- 1</span> Gram-p… 5 5</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 2</span> Gram-positive 3.17<span style="color: #949494;">e</span><span style="color: #BB0000;">- 8</span> 1.00<span style="color: #949494;">e</span>+ 0 Gram-p… 5 1</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 3</span> Gram-negative 9.99<span style="color: #949494;">e</span><span style="color: #BB0000;">- 1</span> 1.42<span style="color: #949494;">e</span><span style="color: #BB0000;">- 3</span> Gram-n… 5 5</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 4</span> Gram-positive 2.22<span style="color: #949494;">e</span><span style="color: #BB0000;">-16</span> 1 <span style="color: #949494;">e</span>+ 0 Gram-p… 5 5</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 5</span> Gram-negative 9.46<span style="color: #949494;">e</span><span style="color: #BB0000;">- 1</span> 5.42<span style="color: #949494;">e</span><span style="color: #BB0000;">- 2</span> Gram-n… 5 5</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 6</span> Gram-positive 1.07<span style="color: #949494;">e</span><span style="color: #BB0000;">- 1</span> 8.93<span style="color: #949494;">e</span><span style="color: #BB0000;">- 1</span> Gram-p… 5 5</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 7</span> Gram-positive 2.22<span style="color: #949494;">e</span><span style="color: #BB0000;">-16</span> 1 <span style="color: #949494;">e</span>+ 0 Gram-p… 1 5</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 8</span> Gram-positive 2.22<span style="color: #949494;">e</span><span style="color: #BB0000;">-16</span> 1 <span style="color: #949494;">e</span>+ 0 Gram-p… 4 4</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 9</span> Gram-negative 1 <span style="color: #949494;">e</span>+ 0 2.22<span style="color: #949494;">e</span><span style="color: #BB0000;">-16</span> Gram-n… 1 1</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">10</span> Gram-positive 6.05<span style="color: #949494;">e</span><span style="color: #BB0000;">-11</span> 1.00<span style="color: #949494;">e</span>+ 0 Gram-p… 4 4</span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># 384 more rows</span></span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># 18 more variables: AMK &lt;int&gt;, KAN &lt;int&gt;, PEN &lt;int&gt;, OXA &lt;int&gt;, FLC &lt;int&gt;,</span></span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># AMX &lt;int&gt;, AMC &lt;int&gt;, AMP &lt;int&gt;, TZP &lt;int&gt;, CZO &lt;int&gt;, FEP &lt;int&gt;,</span></span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># CXM &lt;int&gt;, FOX &lt;int&gt;, CTX &lt;int&gt;, CAZ &lt;int&gt;, CRO &lt;int&gt;, IPM &lt;int&gt;, MEM &lt;int&gt;</span></span></span>
<span></span>
<span><span class="co"># Evaluate model performance</span></span>
<span><span class="va">metrics</span> <span class="op">&lt;-</span> <span class="va">predictions</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">metrics</span><span class="op">(</span>truth <span class="op">=</span> <span class="va">mo</span>, estimate <span class="op">=</span> <span class="va">.pred_class</span><span class="op">)</span> <span class="co"># Calculate performance metrics</span></span>
<span></span>
<span><span class="va">metrics</span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># A tibble: 2 × 3</span></span></span>
<span><span class="co">#&gt; .metric .estimator .estimate</span></span>
<span><span class="co">#&gt; <span style="color: #949494; font-style: italic;">&lt;chr&gt;</span> <span style="color: #949494; font-style: italic;">&lt;chr&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">1</span> accuracy binary 0.995</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">2</span> kap binary 0.989</span></span>
<span></span>
<span></span>
<span><span class="co"># To assess some other model properties, you can make our own `metrics()` function</span></span>
<span><span class="va">our_metrics</span> <span class="op">&lt;-</span> <span class="fu">metric_set</span><span class="op">(</span><span class="va">accuracy</span>, <span class="va">kap</span>, <span class="va">ppv</span>, <span class="va">npv</span><span class="op">)</span> <span class="co"># add Positive Predictive Value and Negative Predictive Value</span></span>
<span><span class="va">metrics2</span> <span class="op">&lt;-</span> <span class="va">predictions</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">our_metrics</span><span class="op">(</span>truth <span class="op">=</span> <span class="va">mo</span>, estimate <span class="op">=</span> <span class="va">.pred_class</span><span class="op">)</span> <span class="co"># run again on our `our_metrics()` function</span></span>
<span></span>
<span><span class="va">metrics2</span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># A tibble: 4 × 3</span></span></span>
<span><span class="co">#&gt; .metric .estimator .estimate</span></span>
<span><span class="co">#&gt; <span style="color: #949494; font-style: italic;">&lt;chr&gt;</span> <span style="color: #949494; font-style: italic;">&lt;chr&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">1</span> accuracy binary 0.995</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">2</span> kap binary 0.989</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">3</span> ppv binary 0.987</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">4</span> npv binary 1</span></span></code></pre></div>
<p><strong>Explanation:</strong></p>
<ul>
<li>
<code><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict()</a></code> generates predictions on the testing
set.</li>
<li>
<code>metrics()</code> computes evaluation metrics like accuracy and
kappa.</li>
</ul>
<p>It appears we can predict the Gram stain with a 99.5% accuracy based
on AMR results of only aminoglycosides and beta-lactam antibiotics. The
ROC curve looks like this:</p>
<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">predictions</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">roc_curve</span><span class="op">(</span><span class="va">mo</span>, <span class="va">`.pred_Gram-negative`</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/autoplot.html" class="external-link">autoplot</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<p><img src="AMR_with_tidymodels_files/figure-html/unnamed-chunk-8-1.png" width="720"></p>
</div>
<div class="section level3">
<h3 id="conclusion">
<strong>Conclusion</strong><a class="anchor" aria-label="anchor" href="#conclusion"></a>
</h3>
<p>In this post, we demonstrated how to build a machine learning
pipeline with the <code>tidymodels</code> framework and the
<code>AMR</code> package. By combining selector functions like
<code><a href="../reference/antimicrobial_selectors.html">aminoglycosides()</a></code> and <code><a href="../reference/antimicrobial_selectors.html">betalactams()</a></code> with
<code>tidymodels</code>, we efficiently prepared data, trained a model,
and evaluated its performance.</p>
<p>This workflow is extensible to other antimicrobial classes and
resistance patterns, empowering users to analyse AMR data systematically
and reproducibly.</p>
<hr>
</div>
</div>
<div class="section level2">
<h2 id="example-2-predicting-amr-over-time">Example 2: Predicting AMR Over Time<a class="anchor" aria-label="anchor" href="#example-2-predicting-amr-over-time"></a>
</h2>
<p>In this second example, we aim to predict antimicrobial resistance
(AMR) trends over time using <code>tidymodels</code>. We will model
resistance to three antibiotics (amoxicillin <code>AMX</code>,
amoxicillin-clavulanic acid <code>AMC</code>, and ciprofloxacin
<code>CIP</code>), based on historical data grouped by year and hospital
ward.</p>
<div class="section level3">
<h3 id="objective-1">
<strong>Objective</strong><a class="anchor" aria-label="anchor" href="#objective-1"></a>
</h3>
<p>Our goal is to:</p>
<ol style="list-style-type: decimal">
<li>Prepare the dataset by aggregating resistance data over time.</li>
<li>Define a regression model to predict AMR trends.</li>
<li>Use <code>tidymodels</code> to preprocess, train, and evaluate the
model.</li>
</ol>
</div>
<div class="section level3">
<h3 id="data-preparation-1">
<strong>Data Preparation</strong><a class="anchor" aria-label="anchor" href="#data-preparation-1"></a>
</h3>
<p>We start by transforming the <code>example_isolates</code> dataset
into a structured time-series format.</p>
<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Load required libraries</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://amr-for-r.org">AMR</a></span><span class="op">)</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://tidymodels.tidymodels.org" class="external-link">tidymodels</a></span><span class="op">)</span></span>
<span></span>
<span><span class="co"># Transform dataset</span></span>
<span><span class="va">data_time</span> <span class="op">&lt;-</span> <span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="../reference/top_n_microorganisms.html">top_n_microorganisms</a></span><span class="op">(</span>n <span class="op">=</span> <span class="fl">10</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span> <span class="co"># Filter on the top #10 species</span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/mutate.html" class="external-link">mutate</a></span><span class="op">(</span>year <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/integer.html" class="external-link">as.integer</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/format.html" class="external-link">format</a></span><span class="op">(</span><span class="va">date</span>, <span class="st">"%Y"</span><span class="op">)</span><span class="op">)</span>, <span class="co"># Extract year from date</span></span>
<span> gramstain <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span> <span class="co"># Get taxonomic names</span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/group_by.html" class="external-link">group_by</a></span><span class="op">(</span><span class="va">year</span>, <span class="va">gramstain</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/summarise.html" class="external-link">summarise</a></span><span class="op">(</span><span class="fu"><a href="https://dplyr.tidyverse.org/reference/across.html" class="external-link">across</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="va">AMX</span>, <span class="va">AMC</span>, <span class="va">CIP</span><span class="op">)</span>, </span>
<span> <span class="kw">function</span><span class="op">(</span><span class="va">x</span><span class="op">)</span> <span class="fu"><a href="../reference/proportion.html">resistance</a></span><span class="op">(</span><span class="va">x</span>, minimum <span class="op">=</span> <span class="fl">0</span><span class="op">)</span>,</span>
<span> .names <span class="op">=</span> <span class="st">"res_{.col}"</span><span class="op">)</span>, </span>
<span> .groups <span class="op">=</span> <span class="st">"drop"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span> </span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="op">!</span><span class="fu"><a href="https://rdrr.io/r/base/NA.html" class="external-link">is.na</a></span><span class="op">(</span><span class="va">res_AMX</span><span class="op">)</span> <span class="op">&amp;</span> <span class="op">!</span><span class="fu"><a href="https://rdrr.io/r/base/NA.html" class="external-link">is.na</a></span><span class="op">(</span><span class="va">res_AMC</span><span class="op">)</span> <span class="op">&amp;</span> <span class="op">!</span><span class="fu"><a href="https://rdrr.io/r/base/NA.html" class="external-link">is.na</a></span><span class="op">(</span><span class="va">res_CIP</span><span class="op">)</span><span class="op">)</span> <span class="co"># Drop missing values</span></span>
<span><span class="co">#&gt; <span style="color: #0000BB;"> Using column '</span><span style="color: #0000BB; font-weight: bold;">mo</span><span style="color: #0000BB;">' as input for </span><span style="color: #0000BB; background-color: #EEEEEE;">col_mo</span><span style="color: #0000BB;">.</span></span></span>
<span></span>
<span><span class="va">data_time</span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># A tibble: 32 × 5</span></span></span>
<span><span class="co">#&gt; year gramstain res_AMX res_AMC res_CIP</span></span>
<span><span class="co">#&gt; <span style="color: #949494; font-style: italic;">&lt;int&gt;</span> <span style="color: #949494; font-style: italic;">&lt;chr&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 1</span> <span style="text-decoration: underline;">2</span>002 Gram-negative 1 0.105 0.060<span style="text-decoration: underline;">6</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 2</span> <span style="text-decoration: underline;">2</span>002 Gram-positive 0.838 0.182 0.162 </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 3</span> <span style="text-decoration: underline;">2</span>003 Gram-negative 1 0.071<span style="text-decoration: underline;">4</span> 0 </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 4</span> <span style="text-decoration: underline;">2</span>003 Gram-positive 0.714 0.244 0.154 </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 5</span> <span style="text-decoration: underline;">2</span>004 Gram-negative 0.464 0.093<span style="text-decoration: underline;">8</span> 0 </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 6</span> <span style="text-decoration: underline;">2</span>004 Gram-positive 0.849 0.299 0.244 </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 7</span> <span style="text-decoration: underline;">2</span>005 Gram-negative 0.412 0.132 0.058<span style="text-decoration: underline;">8</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 8</span> <span style="text-decoration: underline;">2</span>005 Gram-positive 0.882 0.382 0.154 </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 9</span> <span style="text-decoration: underline;">2</span>006 Gram-negative 0.379 0 0.1 </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">10</span> <span style="text-decoration: underline;">2</span>006 Gram-positive 0.778 0.333 0.353 </span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># 22 more rows</span></span></span></code></pre></div>
<p><strong>Explanation:</strong></p>
<ul>
<li>
<code>mo_name(mo)</code>: Converts microbial codes into proper
species names.</li>
<li>
<code><a href="../reference/proportion.html">resistance()</a></code>: Converts AMR results into numeric values
(proportion of resistant isolates).</li>
<li>
<code>group_by(year, ward, species)</code>: Aggregates resistance
rates by year and ward.</li>
</ul>
</div>
<div class="section level3">
<h3 id="defining-the-workflow-1">
<strong>Defining the Workflow</strong><a class="anchor" aria-label="anchor" href="#defining-the-workflow-1"></a>
</h3>
<p>We now define the modeling workflow, which consists of a
preprocessing step, a model specification, and the fitting process.</p>
<div class="section level4">
<h4 id="preprocessing-with-a-recipe-1">1. Preprocessing with a Recipe<a class="anchor" aria-label="anchor" href="#preprocessing-with-a-recipe-1"></a>
</h4>
<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Define the recipe</span></span>
<span><span class="va">resistance_recipe_time</span> <span class="op">&lt;-</span> <span class="fu">recipe</span><span class="op">(</span><span class="va">res_AMX</span> <span class="op">~</span> <span class="va">year</span> <span class="op">+</span> <span class="va">gramstain</span>, data <span class="op">=</span> <span class="va">data_time</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">step_dummy</span><span class="op">(</span><span class="va">gramstain</span>, one_hot <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span> <span class="co"># Convert categorical to numerical</span></span>
<span> <span class="fu">step_normalize</span><span class="op">(</span><span class="va">year</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span> <span class="co"># Normalise year for better model performance</span></span>
<span> <span class="fu">step_nzv</span><span class="op">(</span><span class="fu">all_predictors</span><span class="op">(</span><span class="op">)</span><span class="op">)</span> <span class="co"># Remove near-zero variance predictors</span></span>
<span></span>
<span><span class="va">resistance_recipe_time</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; <span style="color: #00BBBB;">──</span> <span style="font-weight: bold;">Recipe</span> <span style="color: #00BBBB;">──────────────────────────────────────────────────────────────────────</span></span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; ── Inputs</span></span>
<span><span class="co">#&gt; Number of variables by role</span></span>
<span><span class="co">#&gt; outcome: 1</span></span>
<span><span class="co">#&gt; predictor: 2</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; ── Operations</span></span>
<span><span class="co">#&gt; <span style="color: #00BBBB;"></span> Dummy variables from: <span style="color: #0000BB;">gramstain</span></span></span>
<span><span class="co">#&gt; <span style="color: #00BBBB;"></span> Centering and scaling for: <span style="color: #0000BB;">year</span></span></span>
<span><span class="co">#&gt; <span style="color: #00BBBB;"></span> Sparse, unbalanced variable filter on: <span style="color: #0000BB;">all_predictors()</span></span></span></code></pre></div>
<p><strong>Explanation:</strong></p>
<ul>
<li>
<code>step_dummy()</code>: Encodes categorical variables
(<code>ward</code>, <code>species</code>) as numerical indicators.</li>
<li>
<code>step_normalize()</code>: Normalises the <code>year</code>
variable.</li>
<li>
<code>step_nzv()</code>: Removes near-zero variance predictors.</li>
</ul>
</div>
<div class="section level4">
<h4 id="specifying-the-model-1">2. Specifying the Model<a class="anchor" aria-label="anchor" href="#specifying-the-model-1"></a>
</h4>
<p>We use a linear regression model to predict resistance trends.</p>
<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Define the linear regression model</span></span>
<span><span class="va">lm_model</span> <span class="op">&lt;-</span> <span class="fu">linear_reg</span><span class="op">(</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">set_engine</span><span class="op">(</span><span class="st">"lm"</span><span class="op">)</span> <span class="co"># Use linear regression</span></span>
<span></span>
<span><span class="va">lm_model</span></span>
<span><span class="co">#&gt; Linear Regression Model Specification (regression)</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; Computational engine: lm</span></span></code></pre></div>
<p><strong>Explanation:</strong></p>
<ul>
<li>
<code>linear_reg()</code>: Defines a linear regression model.</li>
<li>
<code>set_engine("lm")</code>: Uses Rs built-in linear regression
engine.</li>
</ul>
</div>
<div class="section level4">
<h4 id="building-the-workflow-1">3. Building the Workflow<a class="anchor" aria-label="anchor" href="#building-the-workflow-1"></a>
</h4>
<p>We combine the preprocessing recipe and model into a workflow.</p>
<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Create workflow</span></span>
<span><span class="va">resistance_workflow_time</span> <span class="op">&lt;-</span> <span class="fu">workflow</span><span class="op">(</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">add_recipe</span><span class="op">(</span><span class="va">resistance_recipe_time</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">add_model</span><span class="op">(</span><span class="va">lm_model</span><span class="op">)</span></span>
<span></span>
<span><span class="va">resistance_workflow_time</span></span>
<span><span class="co">#&gt; ══ Workflow ════════════════════════════════════════════════════════════════════</span></span>
<span><span class="co">#&gt; <span style="font-style: italic;">Preprocessor:</span> Recipe</span></span>
<span><span class="co">#&gt; <span style="font-style: italic;">Model:</span> linear_reg()</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; ── Preprocessor ────────────────────────────────────────────────────────────────</span></span>
<span><span class="co">#&gt; 3 Recipe Steps</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; • step_dummy()</span></span>
<span><span class="co">#&gt; • step_normalize()</span></span>
<span><span class="co">#&gt; • step_nzv()</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; ── Model ───────────────────────────────────────────────────────────────────────</span></span>
<span><span class="co">#&gt; Linear Regression Model Specification (regression)</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; Computational engine: lm</span></span></code></pre></div>
</div>
</div>
<div class="section level3">
<h3 id="training-and-evaluating-the-model-1">
<strong>Training and Evaluating the Model</strong><a class="anchor" aria-label="anchor" href="#training-and-evaluating-the-model-1"></a>
</h3>
<p>We split the data into training and testing sets, fit the model, and
evaluate performance.</p>
<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Split the data</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/Random.html" class="external-link">set.seed</a></span><span class="op">(</span><span class="fl">123</span><span class="op">)</span></span>
<span><span class="va">data_split_time</span> <span class="op">&lt;-</span> <span class="fu">initial_split</span><span class="op">(</span><span class="va">data_time</span>, prop <span class="op">=</span> <span class="fl">0.8</span><span class="op">)</span></span>
<span><span class="va">train_time</span> <span class="op">&lt;-</span> <span class="fu">training</span><span class="op">(</span><span class="va">data_split_time</span><span class="op">)</span></span>
<span><span class="va">test_time</span> <span class="op">&lt;-</span> <span class="fu">testing</span><span class="op">(</span><span class="va">data_split_time</span><span class="op">)</span></span>
<span></span>
<span><span class="co"># Train the model</span></span>
<span><span class="va">fitted_workflow_time</span> <span class="op">&lt;-</span> <span class="va">resistance_workflow_time</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">fit</span><span class="op">(</span><span class="va">train_time</span><span class="op">)</span></span>
<span></span>
<span><span class="co"># Make predictions</span></span>
<span><span class="va">predictions_time</span> <span class="op">&lt;-</span> <span class="va">fitted_workflow_time</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict</a></span><span class="op">(</span><span class="va">test_time</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/bind_cols.html" class="external-link">bind_cols</a></span><span class="op">(</span><span class="va">test_time</span><span class="op">)</span> </span>
<span></span>
<span><span class="co"># Evaluate model</span></span>
<span><span class="va">metrics_time</span> <span class="op">&lt;-</span> <span class="va">predictions_time</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu">metrics</span><span class="op">(</span>truth <span class="op">=</span> <span class="va">res_AMX</span>, estimate <span class="op">=</span> <span class="va">.pred</span><span class="op">)</span></span>
<span></span>
<span><span class="va">metrics_time</span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># A tibble: 3 × 3</span></span></span>
<span><span class="co">#&gt; .metric .estimator .estimate</span></span>
<span><span class="co">#&gt; <span style="color: #949494; font-style: italic;">&lt;chr&gt;</span> <span style="color: #949494; font-style: italic;">&lt;chr&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">1</span> rmse standard 0.077<span style="text-decoration: underline;">4</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">2</span> rsq standard 0.711 </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">3</span> mae standard 0.070<span style="text-decoration: underline;">4</span></span></span></code></pre></div>
<p><strong>Explanation:</strong></p>
<ul>
<li>
<code>initial_split()</code>: Splits data into training and testing
sets.</li>
<li>
<code>fit()</code>: Trains the workflow.</li>
<li>
<code><a href="https://rdrr.io/r/stats/predict.html" class="external-link">predict()</a></code>: Generates resistance predictions.</li>
<li>
<code>metrics()</code>: Evaluates model performance.</li>
</ul>
</div>
<div class="section level3">
<h3 id="visualising-predictions">
<strong>Visualising Predictions</strong><a class="anchor" aria-label="anchor" href="#visualising-predictions"></a>
</h3>
<p>We plot resistance trends over time for amoxicillin.</p>
<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://ggplot2.tidyverse.org" class="external-link">ggplot2</a></span><span class="op">)</span></span>
<span></span>
<span><span class="co"># Plot actual vs predicted resistance over time</span></span>
<span><span class="fu"><a href="https://ggplot2.tidyverse.org/reference/ggplot.html" class="external-link">ggplot</a></span><span class="op">(</span><span class="va">predictions_time</span>, <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/aes.html" class="external-link">aes</a></span><span class="op">(</span>x <span class="op">=</span> <span class="va">year</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span></span>
<span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/geom_point.html" class="external-link">geom_point</a></span><span class="op">(</span><span class="fu"><a href="https://ggplot2.tidyverse.org/reference/aes.html" class="external-link">aes</a></span><span class="op">(</span>y <span class="op">=</span> <span class="va">res_AMX</span>, color <span class="op">=</span> <span class="st">"Actual"</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span></span>
<span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/geom_path.html" class="external-link">geom_line</a></span><span class="op">(</span><span class="fu"><a href="https://ggplot2.tidyverse.org/reference/aes.html" class="external-link">aes</a></span><span class="op">(</span>y <span class="op">=</span> <span class="va">.pred</span>, color <span class="op">=</span> <span class="st">"Predicted"</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span></span>
<span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/labs.html" class="external-link">labs</a></span><span class="op">(</span>title <span class="op">=</span> <span class="st">"Predicted vs Actual AMX Resistance Over Time"</span>,</span>
<span> x <span class="op">=</span> <span class="st">"Year"</span>,</span>
<span> y <span class="op">=</span> <span class="st">"Resistance Proportion"</span><span class="op">)</span> <span class="op">+</span></span>
<span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/ggtheme.html" class="external-link">theme_minimal</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<p><img src="AMR_with_tidymodels_files/figure-html/unnamed-chunk-14-1.png" width="720"></p>
<p>Additionally, we can visualise resistance trends in
<code>ggplot2</code> and directly add linear models there:</p>
<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://ggplot2.tidyverse.org/reference/ggplot.html" class="external-link">ggplot</a></span><span class="op">(</span><span class="va">data_time</span>, <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/aes.html" class="external-link">aes</a></span><span class="op">(</span>x <span class="op">=</span> <span class="va">year</span>, y <span class="op">=</span> <span class="va">res_AMX</span>, color <span class="op">=</span> <span class="va">gramstain</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span></span>
<span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/geom_path.html" class="external-link">geom_line</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span></span>
<span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/labs.html" class="external-link">labs</a></span><span class="op">(</span>title <span class="op">=</span> <span class="st">"AMX Resistance Trends"</span>,</span>
<span> x <span class="op">=</span> <span class="st">"Year"</span>,</span>
<span> y <span class="op">=</span> <span class="st">"Resistance Proportion"</span><span class="op">)</span> <span class="op">+</span></span>
<span> <span class="co"># add a linear model directly in ggplot2:</span></span>
<span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/geom_smooth.html" class="external-link">geom_smooth</a></span><span class="op">(</span>method <span class="op">=</span> <span class="st">"lm"</span>,</span>
<span> formula <span class="op">=</span> <span class="va">y</span> <span class="op">~</span> <span class="va">x</span>,</span>
<span> alpha <span class="op">=</span> <span class="fl">0.25</span><span class="op">)</span> <span class="op">+</span></span>
<span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/ggtheme.html" class="external-link">theme_minimal</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<p><img src="AMR_with_tidymodels_files/figure-html/unnamed-chunk-15-1.png" width="720"></p>
</div>
<div class="section level3">
<h3 id="conclusion-1">
<strong>Conclusion</strong><a class="anchor" aria-label="anchor" href="#conclusion-1"></a>
</h3>
<p>In this example, we demonstrated how to analyze AMR trends over time
using <code>tidymodels</code>. By aggregating resistance rates by year
and hospital ward, we built a predictive model to track changes in
resistance to amoxicillin (<code>AMX</code>), amoxicillin-clavulanic
acid (<code>AMC</code>), and ciprofloxacin (<code>CIP</code>).</p>
<p>This method can be extended to other antibiotics and resistance
patterns, providing valuable insights into AMR dynamics in healthcare
settings.</p>
</div>
</div>
</main><aside class="col-md-3"><nav id="toc" aria-label="Table of contents"><h2>On this page</h2>
</nav></aside>
</div>
<footer><div class="pkgdown-footer-left">
<p><code>AMR</code> (for R). Free and open-source, licenced under the <a target="_blank" href="https://github.com/msberends/AMR/blob/main/LICENSE" class="external-link">GNU General Public License version 2.0 (GPL-2)</a>.<br>Developed at the <a target="_blank" href="https://www.rug.nl" class="external-link">University of Groningen</a> and <a target="_blank" href="https://www.umcg.nl" class="external-link">University Medical Center Groningen</a> in The Netherlands.</p>
</div>
<div class="pkgdown-footer-right">
<p><a target="_blank" href="https://www.rug.nl" class="external-link"><img src="https://github.com/msberends/AMR/raw/main/pkgdown/assets/logo_rug.svg" style="max-width: 150px;"></a><a target="_blank" href="https://www.umcg.nl" class="external-link"><img src="https://github.com/msberends/AMR/raw/main/pkgdown/assets/logo_umcg.svg" style="max-width: 150px;"></a></p>
</div>
</footer>
</div>
</body>
</html>