mirror of https://github.com/msberends/AMR.git
230 lines
11 KiB
R
230 lines
11 KiB
R
# ==================================================================== #
|
|
# TITLE #
|
|
# AMR: An R Package for Working with Antimicrobial Resistance Data #
|
|
# #
|
|
# SOURCE #
|
|
# https://github.com/msberends/AMR #
|
|
# #
|
|
# CITE AS #
|
|
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
|
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
|
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
|
# doi:10.18637/jss.v104.i03 #
|
|
# #
|
|
# Developed at the University of Groningen and the University Medical #
|
|
# Center Groningen in The Netherlands, in collaboration with many #
|
|
# colleagues from around the world, see our website. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# #
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
|
# ==================================================================== #
|
|
|
|
#' Add Custom Microorganisms to This Package
|
|
#'
|
|
#' With [add_custom_microorganisms()] you can add your own custom microorganisms to the `AMR` package, such the non-taxonomic outcome of laboratory analysis.
|
|
#' @param x a [data.frame] resembling the [microorganisms] data set, at least containing columns "genus" and "species"
|
|
#' @details This function will fill in missing taxonomy for you, if specific taxonomic columns are missing, see *Examples*.
|
|
#'
|
|
#' **Important:** Due to how \R works, the [add_custom_microorganisms()] function has to be run in every \R session - added microorganisms are not stored between sessions and are thus lost when \R is exited.
|
|
#'
|
|
#' There are two ways to automate this process:
|
|
#'
|
|
#' **Method 1:** Save the microorganisms to a local or remote file (can even be the internet). To use this method:
|
|
#'
|
|
#' 1. Create a data set in the structure of the [microorganisms] data set (containing at the very least columns "genus" and "species") and save it with [saveRDS()] to a location of choice, e.g. `"~/my_custom_mo.rds"`, or any remote location.
|
|
#'
|
|
#' 2. Set the file location to the `AMR_custom_mo` \R option: `options(AMR_custom_mo = "~/my_custom_mo.rds")`. This can even be a remote file location, such as an https URL. Since options are not saved between \R sessions, it is best to save this option to the `.Rprofile` file so that it will loaded on start-up of \R. To do this, open the `.Rprofile` file using e.g. `utils::file.edit("~/.Rprofile")`, add this text and save the file:
|
|
#'
|
|
#' ```r
|
|
#' # Add custom microorganism codes:
|
|
#' options(AMR_custom_mo = "~/my_custom_mo.rds")
|
|
#' ```
|
|
#'
|
|
#' Upon package load, this file will be loaded and run through the [add_custom_microorganisms()] function.
|
|
#'
|
|
#' **Method 2:** Save the microorganism directly to your `.Rprofile` file. An important downside is that this requires to load the `AMR` package at every start-up. To use this method:
|
|
#'
|
|
#' 1. Edit the `.Rprofile` file using e.g. `utils::file.edit("~/.Rprofile")`.
|
|
#'
|
|
#' 2. Add a text like below and save the file:
|
|
#'
|
|
#' ```r
|
|
#' # Add custom antibiotic drug codes:
|
|
#' library(AMR)
|
|
#' add_custom_microorganisms(
|
|
#' data.frame(genus = "Enterobacter",
|
|
#' species = "asburiae/cloacae")
|
|
#' )
|
|
#' ```
|
|
#'
|
|
#' Use [clear_custom_microorganisms()] to clear the previously added antimicrobials.
|
|
#' @seealso [add_custom_antimicrobials()] to add custom antimicrobials to this package.
|
|
#' @rdname add_custom_microorganisms
|
|
#' @export
|
|
#' @examples
|
|
#' \donttest{
|
|
#'
|
|
#' # a combination of species is not formal taxonomy, so
|
|
#' # this will result in only "Enterobacter asburiae":
|
|
#' mo_name("Enterobacter asburiae/cloacae")
|
|
#'
|
|
#' # now add a custom entry - it will be considered by as.mo() and
|
|
#' # all mo_*() functions
|
|
#' add_custom_microorganisms(
|
|
#' data.frame(genus = "Enterobacter",
|
|
#' species = "asburiae/cloacae"
|
|
#' )
|
|
#' )
|
|
#'
|
|
#' # E. asburiae/cloacae is now a new microorganism:
|
|
#' mo_name("Enterobacter asburiae/cloacae")
|
|
#'
|
|
#' # its code:
|
|
#' as.mo("Enterobacter asburiae/cloacae")
|
|
#'
|
|
#' # all internal algorithms will work as well:
|
|
#' mo_name("Ent asburia cloacae")
|
|
#'
|
|
#' # and even the taxonomy was added based on the genus!
|
|
#' mo_family("E. asburiae/cloacae")
|
|
#' mo_gramstain("Enterobacter asburiae/cloacae")
|
|
#'
|
|
#' mo_info("Enterobacter asburiae/cloacae")
|
|
#' }
|
|
add_custom_microorganisms <- function(x) {
|
|
meet_criteria(x, allow_class = "data.frame")
|
|
stop_ifnot(
|
|
all(c("genus", "species") %in% colnames(x)),
|
|
paste0("`x` must contain columns ", vector_and(c("genus", "species"), sort = FALSE), ".")
|
|
)
|
|
|
|
# remove any extra class/type, such as grouped tbl, or data.table:
|
|
x <- as.data.frame(x, stringsAsFactors = FALSE)
|
|
# rename 'name' to 'fullname' if it's in the data set
|
|
if ("name" %in% colnames(x) && !"fullname" %in% colnames(x)) {
|
|
colnames(x)[colnames(x) == "name"] <- "fullname"
|
|
}
|
|
# keep only columns available in the microorganisms data set
|
|
x <- x[, colnames(AMR_env$MO_lookup)[colnames(AMR_env$MO_lookup) %in% colnames(x)], drop = FALSE]
|
|
|
|
# clean the input ----
|
|
if (!"subspecies" %in% colnames(x)) {
|
|
x$subspecies <- NA_character_
|
|
}
|
|
x$genus <- trimws2(x$genus)
|
|
x$species <- trimws2(x$species)
|
|
x$subspecies <- trimws2(x$subspecies)
|
|
x$genus[is.na(x$genus)] <- ""
|
|
x$species[is.na(x$species)] <- ""
|
|
x$subspecies[is.na(x$subspecies)] <- ""
|
|
stop_if(any(x$genus %like% " "),
|
|
"the 'genus' column must not contain spaces")
|
|
stop_if(any(x$species %like% " "),
|
|
"the 'species' column must not contain spaces")
|
|
stop_if(any(x$subspecies %like% " "),
|
|
"the 'subspecies' column must not contain spaces")
|
|
|
|
if ("rank" %in% colnames(x)) {
|
|
stop_ifnot(all(x$rank %in% AMR_env$MO_lookup$rank),
|
|
"the 'rank' column can only contain these values: ", vector_or(AMR_env$MO_lookup$rank))
|
|
} else {
|
|
x$rank <- ifelse(!is.na(x$subspecies), "subspecies",
|
|
ifelse(!is.na(x$species), "species",
|
|
ifelse(!is.na(x$genus), "genus",
|
|
stop("in add_custom_microorganisms(): the 'genus' column cannot be empty",
|
|
call. = FALSE))))
|
|
}
|
|
if (!"fullname" %in% colnames(x)) {
|
|
x$fullname <- trimws2(paste(x$genus, x$species, x$subspecies))
|
|
}
|
|
if (!"kingdom" %in% colnames(x)) x$kingdom <- ""
|
|
if (!"phylum" %in% colnames(x)) x$phylum <- ""
|
|
if (!"class" %in% colnames(x)) x$class <- ""
|
|
if (!"order" %in% colnames(x)) x$order <- ""
|
|
if (!"family" %in% colnames(x)) x$family <- ""
|
|
|
|
for (col in colnames(x)) {
|
|
if (is.list(AMR_env$MO_lookup[, col, drop = TRUE])) {
|
|
x[, col] <- as.list(x[, col, drop = TRUE])
|
|
}
|
|
}
|
|
|
|
# fill in other columns
|
|
x$status <- "accepted"
|
|
x$prevalence <- 1
|
|
x$kingdom <- AMR_env$MO_lookup$kingdom[match(x$genus, AMR_env$MO_lookup$genus)]
|
|
x$phylum <- AMR_env$MO_lookup$phylum[match(x$genus, AMR_env$MO_lookup$genus)]
|
|
x$class <- AMR_env$MO_lookup$class[match(x$genus, AMR_env$MO_lookup$genus)]
|
|
x$order <- AMR_env$MO_lookup$order[match(x$genus, AMR_env$MO_lookup$genus)]
|
|
x$family <- AMR_env$MO_lookup$family[match(x$genus, AMR_env$MO_lookup$genus)]
|
|
|
|
x$kingdom[is.na(x$kingdom)] <- ""
|
|
x$phylum[is.na(x$phylum)] <- ""
|
|
x$class[is.na(x$class)] <- ""
|
|
x$order[is.na(x$order)] <- ""
|
|
x$family[is.na(x$family)] <- ""
|
|
|
|
x$kingdom_index <- AMR_env$MO_lookup$kingdom_index[match(x$genus, AMR_env$MO_lookup$genus)]
|
|
x$fullname_lower <- tolower(x$fullname)
|
|
x$full_first <- substr(x$fullname_lower, 1, 1)
|
|
x$species_first <- tolower(substr(x$species, 1, 1))
|
|
x$subspecies_first <- tolower(substr(x$subspecies, 1, 1))
|
|
|
|
if (!"mo" %in% colnames(x)) {
|
|
# create the mo code
|
|
x$mo <- NA_character_
|
|
}
|
|
x$mo <- trimws2(x$mo)
|
|
x$mo[x$mo == ""] <- NA_character_
|
|
x$mo[is.na(x$mo)] <- paste0("CUSTOM_",
|
|
toupper(abbreviate(gsub(" +", " _ ",
|
|
gsub("[^A-Za-z0-9-]", " ",
|
|
trimws2(paste(x$genus, x$species, x$subspecies)))),
|
|
minlength = 10,
|
|
named = FALSE)))
|
|
|
|
# add to package ----
|
|
|
|
AMR_env$custom_mo_codes <- c(AMR_env$custom_mo_codes, x$mo)
|
|
class(AMR_env$MO_lookup$mo) <- "character"
|
|
|
|
new_df <- AMR_env$MO_lookup[0, , drop = FALSE][seq_len(NROW(x)), , drop = FALSE]
|
|
rownames(new_df) <- NULL
|
|
list_cols <- vapply(FUN.VALUE = logical(1), new_df, is.list)
|
|
for (l in which(list_cols)) {
|
|
# prevent binding NULLs in lists, replace with NA
|
|
new_df[, l] <- as.list(NA_character_)
|
|
}
|
|
for (col in colnames(x)) {
|
|
# assign new values
|
|
new_df[, col] <- x[, col, drop = TRUE]
|
|
}
|
|
|
|
# clear previous coercions
|
|
suppressMessages(mo_reset_session())
|
|
|
|
AMR_env$MO_lookup <- unique(rbind(AMR_env$MO_lookup, new_df))
|
|
class(AMR_env$MO_lookup$mo) <- c("mo", "character")
|
|
message_("Added ", nr2char(nrow(x)), " record", ifelse(nrow(x) > 1, "s", ""), " to the internal `microorganisms` data set.")
|
|
}
|
|
|
|
#' @rdname add_custom_microorganisms
|
|
#' @export
|
|
clear_custom_microorganisms <- function() {
|
|
n <- nrow(AMR_env$MO_lookup)
|
|
AMR_env$MO_lookup <- create_MO_lookup()
|
|
n2 <- nrow(AMR_env$MO_lookup)
|
|
AMR_env$custom_mo_codes <- character(0)
|
|
AMR_env$mo_previously_coerced <- AMR_env$mo_previously_coerced[which(AMR_env$mo_previously_coerced$mo %in% AMR_env$MO_lookup$mo), , drop = FALSE]
|
|
AMR_env$mo_uncertainties <- AMR_env$mo_uncertainties[0, , drop = FALSE]
|
|
message_("Cleared ", nr2char(n - n2), " custom record", ifelse(n - n2 > 1, "s", ""), " from the internal `microorganisms` data set.")
|
|
}
|