mirror of
https://github.com/msberends/AMR.git
synced 2025-01-14 00:11:50 +01:00
540 lines
23 KiB
R
Executable File
540 lines
23 KiB
R
Executable File
# ==================================================================== #
|
|
# TITLE #
|
|
# Antimicrobial Resistance (AMR) Analysis #
|
|
# #
|
|
# SOURCE #
|
|
# https://gitlab.com/msberends/AMR #
|
|
# #
|
|
# LICENCE #
|
|
# (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# #
|
|
# This R package was created for academic research and was publicly #
|
|
# released in the hope that it will be useful, but it comes WITHOUT #
|
|
# ANY WARRANTY OR LIABILITY. #
|
|
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
|
|
# ==================================================================== #
|
|
|
|
#' Determine first (weighted) isolates
|
|
#'
|
|
#' Determine first (weighted) isolates of all microorganisms of every patient per episode and (if needed) per specimen type.
|
|
#' @param x a \code{data.frame} containing isolates.
|
|
#' @param col_date column name of the result date (or date that is was received on the lab), defaults to the first column of with a date class
|
|
#' @param col_patient_id column name of the unique IDs of the patients, defaults to the first column that starts with 'patient' or 'patid' (case insensitive)
|
|
#' @param col_mo column name of the IDs of the microorganisms (see \code{\link{as.mo}}), defaults to the first column of class \code{mo}. Values will be coerced using \code{\link{as.mo}}.
|
|
#' @param col_testcode column name of the test codes. Use \code{col_testcode = NULL} to \strong{not} exclude certain test codes (like test codes for screening). In that case \code{testcodes_exclude} will be ignored.
|
|
#' @param col_specimen column name of the specimen type or group
|
|
#' @param col_icu column name of the logicals (\code{TRUE}/\code{FALSE}) whether a ward or department is an Intensive Care Unit (ICU)
|
|
#' @param col_keyantibiotics column name of the key antibiotics to determine first \emph{weighted} isolates, see \code{\link{key_antibiotics}}. Defaults to the first column that starts with 'key' followed by 'ab' or 'antibiotics' (case insensitive). Use \code{col_keyantibiotics = FALSE} to prevent this.
|
|
#' @param episode_days episode in days after which a genus/species combination will be determined as 'first isolate' again. The default of 365 days is based on the guideline by CLSI, see Source.
|
|
#' @param testcodes_exclude character vector with test codes that should be excluded (case-insensitive)
|
|
#' @param icu_exclude logical whether ICU isolates should be excluded (rows with value \code{TRUE} in column \code{col_icu})
|
|
#' @param specimen_group value in column \code{col_specimen} to filter on
|
|
#' @param type type to determine weighed isolates; can be \code{"keyantibiotics"} or \code{"points"}, see Details
|
|
#' @param ignore_I logical to determine whether antibiotic interpretations with \code{"I"} will be ignored when \code{type = "keyantibiotics"}, see Details
|
|
#' @param points_threshold points until the comparison of key antibiotics will lead to inclusion of an isolate when \code{type = "points"}, see Details
|
|
#' @param info print progress
|
|
#' @param include_unknown logical to determine whether 'unknown' microorganisms should be included too, i.e. microbial code \code{"UNKNOWN"}, which defaults to \code{FALSE}. For WHONET users, this means that all records with organism code \code{"con"} (\emph{contamination}) will be excluded at default. Isolates with a microbial ID of \code{NA} will always be excluded as first isolate.
|
|
#' @param ... parameters passed on to the \code{first_isolate} function
|
|
#' @details \strong{WHY THIS IS SO IMPORTANT} \cr
|
|
#' To conduct an analysis of antimicrobial resistance, you should only include the first isolate of every patient per episode \href{https://www.ncbi.nlm.nih.gov/pubmed/17304462}{[1]}. If you would not do this, you could easily get an overestimate or underestimate of the resistance of an antibiotic. Imagine that a patient was admitted with an MRSA and that it was found in 5 different blood cultures the following week. The resistance percentage of oxacillin of all \emph{S. aureus} isolates would be overestimated, because you included this MRSA more than once. It would be \href{https://en.wikipedia.org/wiki/Selection_bias}{selection bias}.
|
|
#'
|
|
#' All isolates with a microbial ID of \code{NA} will be excluded as first isolate.
|
|
#'
|
|
#' The functions \code{filter_first_isolate} and \code{filter_first_weighted_isolate} are helper functions to quickly filter on first isolates. The function \code{filter_first_isolate} is essentially equal to:
|
|
#' \preformatted{
|
|
#' x \%>\%
|
|
#' mutate(only_firsts = first_isolate(x, ...)) \%>\%
|
|
#' filter(only_firsts == TRUE) \%>\%
|
|
#' select(-only_firsts)
|
|
#' }
|
|
#' The function \code{filter_first_weighted_isolate} is essentially equal to:
|
|
#' \preformatted{
|
|
#' x \%>\%
|
|
#' mutate(keyab = key_antibiotics(.)) \%>\%
|
|
#' mutate(only_weighted_firsts = first_isolate(x,
|
|
#' col_keyantibiotics = "keyab", ...)) \%>\%
|
|
#' filter(only_weighted_firsts == TRUE) \%>\%
|
|
#' select(-only_weighted_firsts)
|
|
#' }
|
|
#' @section Key antibiotics:
|
|
#' There are two ways to determine whether isolates can be included as first \emph{weighted} isolates which will give generally the same results: \cr
|
|
#'
|
|
#' \strong{1. Using} \code{type = "keyantibiotics"} \strong{and parameter} \code{ignore_I} \cr
|
|
#' Any difference from S to R (or vice versa) will (re)select an isolate as a first weighted isolate. With \code{ignore_I = FALSE}, also differences from I to S|R (or vice versa) will lead to this. This is a reliable method and 30-35 times faster than method 2. Read more about this in the \code{\link{key_antibiotics}} function. \cr
|
|
#'
|
|
#' \strong{2. Using} \code{type = "points"} \strong{and parameter} \code{points_threshold} \cr
|
|
#' A difference from I to S|R (or vice versa) means 0.5 points, a difference from S to R (or vice versa) means 1 point. When the sum of points exceeds \code{points_threshold}, which default to \code{2}, an isolate will be (re)selected as a first weighted isolate.
|
|
#' @rdname first_isolate
|
|
#' @seealso \code{\link{key_antibiotics}}
|
|
#' @export
|
|
#' @importFrom dplyr arrange_at lag between row_number filter mutate arrange pull ungroup
|
|
#' @importFrom crayon blue bold silver
|
|
# @importFrom clean percentage
|
|
#' @return Logical vector
|
|
#' @source Methodology of this function is based on: \strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition}, 2014, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}.
|
|
#' @inheritSection AMR Read more on our website!
|
|
#' @examples
|
|
#' # `example_isolates` is a dataset available in the AMR package.
|
|
#' # See ?example_isolates.
|
|
#'
|
|
#' library(dplyr)
|
|
#' # Filter on first isolates:
|
|
#' example_isolates %>%
|
|
#' mutate(first_isolate = first_isolate(.,
|
|
#' col_date = "date",
|
|
#' col_patient_id = "patient_id",
|
|
#' col_mo = "mo")) %>%
|
|
#' filter(first_isolate == TRUE)
|
|
#'
|
|
#' # Which can be shortened to:
|
|
#' example_isolates %>%
|
|
#' filter_first_isolate()
|
|
#' # or for first weighted isolates:
|
|
#' example_isolates %>%
|
|
#' filter_first_weighted_isolate()
|
|
#'
|
|
#' # Now let's see if first isolates matter:
|
|
#' A <- example_isolates %>%
|
|
#' group_by(hospital_id) %>%
|
|
#' summarise(count = n_rsi(GEN), # gentamicin availability
|
|
#' resistance = portion_IR(GEN)) # gentamicin resistance
|
|
#'
|
|
#' B <- example_isolates %>%
|
|
#' filter_first_weighted_isolate() %>% # the 1st isolate filter
|
|
#' group_by(hospital_id) %>%
|
|
#' summarise(count = n_rsi(GEN), # gentamicin availability
|
|
#' resistance = portion_IR(GEN)) # gentamicin resistance
|
|
#'
|
|
#' # Have a look at A and B.
|
|
#' # B is more reliable because every isolate is only counted once.
|
|
#' # Gentamicin resitance in hospital D appears to be 3.1% higher than
|
|
#' # when you (erroneously) would have used all isolates for analysis.
|
|
#'
|
|
#'
|
|
#' ## OTHER EXAMPLES:
|
|
#'
|
|
#' \dontrun{
|
|
#'
|
|
#' # set key antibiotics to a new variable
|
|
#' x$keyab <- key_antibiotics(x)
|
|
#'
|
|
#' x$first_isolate <- first_isolate(x)
|
|
#'
|
|
#' x$first_isolate_weighed <- first_isolate(x, col_keyantibiotics = 'keyab')
|
|
#'
|
|
#' x$first_blood_isolate <- first_isolate(x, specimen_group = "Blood")
|
|
#' }
|
|
first_isolate <- function(x,
|
|
col_date = NULL,
|
|
col_patient_id = NULL,
|
|
col_mo = NULL,
|
|
col_testcode = NULL,
|
|
col_specimen = NULL,
|
|
col_icu = NULL,
|
|
col_keyantibiotics = NULL,
|
|
episode_days = 365,
|
|
testcodes_exclude = NULL,
|
|
icu_exclude = FALSE,
|
|
specimen_group = NULL,
|
|
type = "keyantibiotics",
|
|
ignore_I = TRUE,
|
|
points_threshold = 2,
|
|
info = TRUE,
|
|
include_unknown = FALSE,
|
|
...) {
|
|
|
|
if (!is.data.frame(x)) {
|
|
stop("`x` must be a data.frame.", call. = FALSE)
|
|
}
|
|
|
|
dots <- unlist(list(...))
|
|
if (length(dots) != 0) {
|
|
# backwards compatibility with old parameters
|
|
dots.names <- dots %>% names()
|
|
if ("filter_specimen" %in% dots.names) {
|
|
specimen_group <- dots[which(dots.names == "filter_specimen")]
|
|
}
|
|
if ("tbl" %in% dots.names) {
|
|
x <- dots[which(dots.names == "tbl")]
|
|
}
|
|
}
|
|
|
|
# try to find columns based on type
|
|
# -- mo
|
|
if (is.null(col_mo)) {
|
|
col_mo <- search_type_in_df(x = x, type = "mo")
|
|
}
|
|
if (is.null(col_mo)) {
|
|
stop("`col_mo` must be set.", call. = FALSE)
|
|
}
|
|
|
|
# -- date
|
|
if (is.null(col_date)) {
|
|
col_date <- search_type_in_df(x = x, type = "date")
|
|
}
|
|
if (is.null(col_date)) {
|
|
stop("`col_date` must be set.", call. = FALSE)
|
|
}
|
|
# convert to Date (pipes/pull for supporting tibbles too)
|
|
dates <- x %>% pull(col_date) %>% as.Date()
|
|
dates[is.na(dates)] <- as.Date("1970-01-01")
|
|
x[, col_date] <- dates
|
|
|
|
# -- patient id
|
|
if (is.null(col_patient_id)) {
|
|
if (all(c("First name", "Last name", "Sex") %in% colnames(x))) {
|
|
# WHONET support
|
|
x <- x %>% mutate(patient_id = paste(`First name`, `Last name`, Sex))
|
|
col_patient_id <- "patient_id"
|
|
message(blue(paste0("NOTE: Using combined columns `", bold("First name"), "`, `", bold("Last name"), "` and `", bold("Sex"), "` as input for `col_patient_id`")))
|
|
} else {
|
|
col_patient_id <- search_type_in_df(x = x, type = "patient_id")
|
|
}
|
|
}
|
|
if (is.null(col_patient_id)) {
|
|
stop("`col_patient_id` must be set.", call. = FALSE)
|
|
}
|
|
|
|
# -- key antibiotics
|
|
if (is.null(col_keyantibiotics)) {
|
|
col_keyantibiotics <- search_type_in_df(x = x, type = "keyantibiotics")
|
|
}
|
|
if (isFALSE(col_keyantibiotics)) {
|
|
col_keyantibiotics <- NULL
|
|
}
|
|
|
|
# -- specimen
|
|
if (is.null(col_specimen) & !is.null(specimen_group)) {
|
|
col_specimen <- search_type_in_df(x = x, type = "specimen")
|
|
}
|
|
if (isFALSE(col_specimen)) {
|
|
col_specimen <- NULL
|
|
}
|
|
|
|
# check if columns exist
|
|
check_columns_existance <- function(column, tblname = x) {
|
|
if (NROW(tblname) <= 1 | NCOL(tblname) <= 1) {
|
|
stop("Please check tbl for existance.")
|
|
}
|
|
|
|
if (!is.null(column)) {
|
|
if (!(column %in% colnames(tblname))) {
|
|
stop("Column `", column, "` not found.")
|
|
}
|
|
}
|
|
}
|
|
|
|
check_columns_existance(col_date)
|
|
check_columns_existance(col_patient_id)
|
|
check_columns_existance(col_mo)
|
|
check_columns_existance(col_testcode)
|
|
check_columns_existance(col_icu)
|
|
check_columns_existance(col_keyantibiotics)
|
|
|
|
# create new dataframe with original row index
|
|
x <- x %>%
|
|
mutate(newvar_row_index = seq_len(nrow(x)),
|
|
newvar_mo = x %>% pull(col_mo) %>% as.mo(),
|
|
newvar_genus_species = paste(mo_genus(newvar_mo), mo_species(newvar_mo)),
|
|
newvar_date = x %>% pull(col_date),
|
|
newvar_patient_id = x %>% pull(col_patient_id))
|
|
|
|
if (is.null(col_testcode)) {
|
|
testcodes_exclude <- NULL
|
|
}
|
|
# remove testcodes
|
|
if (!is.null(testcodes_exclude) & info == TRUE) {
|
|
message(blue(paste0("[Criterion] Excluded test codes: ", toString(testcodes_exclude))))
|
|
}
|
|
|
|
if (is.null(col_icu)) {
|
|
icu_exclude <- FALSE
|
|
} else {
|
|
x <- x %>%
|
|
mutate(col_icu = x %>% pull(col_icu) %>% as.logical())
|
|
}
|
|
|
|
if (is.null(col_specimen)) {
|
|
specimen_group <- NULL
|
|
}
|
|
|
|
# filter on specimen group and keyantibiotics when they are filled in
|
|
if (!is.null(specimen_group)) {
|
|
check_columns_existance(col_specimen, x)
|
|
if (info == TRUE) {
|
|
message(blue(paste0("[Criterion] Excluded other than specimen group '", specimen_group, "'")))
|
|
}
|
|
}
|
|
if (!is.null(col_keyantibiotics)) {
|
|
x <- x %>% mutate(key_ab = x %>% pull(col_keyantibiotics))
|
|
}
|
|
|
|
if (is.null(testcodes_exclude)) {
|
|
testcodes_exclude <- ""
|
|
}
|
|
|
|
# arrange data to the right sorting
|
|
if (is.null(specimen_group)) {
|
|
# not filtering on specimen
|
|
if (icu_exclude == FALSE) {
|
|
if (info == TRUE & !is.null(col_icu)) {
|
|
message(blue("[Criterion] Included isolates from ICU"))
|
|
}
|
|
x <- x %>%
|
|
arrange(newvar_patient_id,
|
|
newvar_genus_species,
|
|
newvar_date)
|
|
row.start <- 1
|
|
row.end <- nrow(x)
|
|
} else {
|
|
if (info == TRUE) {
|
|
message(blue("[Criterion] Excluded isolates from ICU"))
|
|
}
|
|
x <- x %>%
|
|
arrange_at(c(col_icu,
|
|
"newvar_patient_id",
|
|
"newvar_genus_species",
|
|
"newvar_date"))
|
|
|
|
suppressWarnings(
|
|
row.start <- which(x %>% pull(col_icu) == FALSE) %>% min(na.rm = TRUE)
|
|
)
|
|
suppressWarnings(
|
|
row.end <- which(x %>% pull(col_icu) == FALSE) %>% max(na.rm = TRUE)
|
|
)
|
|
}
|
|
|
|
} else {
|
|
# filtering on specimen and only analyse these row to save time
|
|
if (icu_exclude == FALSE) {
|
|
if (info == TRUE & !is.null(col_icu)) {
|
|
message(blue("[Criterion] Included isolates from ICU.\n"))
|
|
}
|
|
x <- x %>%
|
|
arrange_at(c(col_specimen,
|
|
"newvar_patient_id",
|
|
"newvar_genus_species",
|
|
"newvar_date"))
|
|
suppressWarnings(
|
|
row.start <- which(x %>% pull(col_specimen) == specimen_group) %>% min(na.rm = TRUE)
|
|
)
|
|
suppressWarnings(
|
|
row.end <- which(x %>% pull(col_specimen) == specimen_group) %>% max(na.rm = TRUE)
|
|
)
|
|
} else {
|
|
if (info == TRUE) {
|
|
message(blue("[Criterion] Excluded isolates from ICU"))
|
|
}
|
|
x <- x %>%
|
|
arrange_at(c(col_icu,
|
|
col_specimen,
|
|
"newvar_patient_id",
|
|
"newvar_genus_species",
|
|
"newvar_date"))
|
|
suppressWarnings(
|
|
row.start <- min(which(x %>% pull(col_specimen) == specimen_group
|
|
& x %>% pull(col_icu) == FALSE),
|
|
na.rm = TRUE)
|
|
)
|
|
suppressWarnings(
|
|
row.end <- max(which(x %>% pull(col_specimen) == specimen_group &
|
|
x %>% pull(col_icu) == FALSE),
|
|
na.rm = TRUE)
|
|
)
|
|
}
|
|
|
|
}
|
|
|
|
# no isolates found
|
|
if (abs(row.start) == Inf | abs(row.end) == Inf) {
|
|
if (info == TRUE) {
|
|
message(paste("=> Found", bold("no isolates")))
|
|
}
|
|
return(rep(FALSE, nrow(x)))
|
|
}
|
|
|
|
# did find some isolates - add new index numbers of rows
|
|
x <- x %>% mutate(newvar_row_index_sorted = seq_len(nrow(.)))
|
|
|
|
scope.size <- row.end - row.start + 1
|
|
|
|
identify_new_year <- function(x, episode_days) {
|
|
# I asked on StackOverflow:
|
|
# https://stackoverflow.com/questions/42122245/filter-one-row-every-year
|
|
if (length(x) == 1) {
|
|
return(TRUE)
|
|
}
|
|
indices <- integer(0)
|
|
start <- x[1]
|
|
ind <- 1
|
|
indices[ind] <- ind
|
|
for (i in 2:length(x)) {
|
|
if (isTRUE(as.numeric(x[i] - start) >= episode_days)) {
|
|
ind <- ind + 1
|
|
indices[ind] <- i
|
|
start <- x[i]
|
|
}
|
|
}
|
|
result <- rep(FALSE, length(x))
|
|
result[indices] <- TRUE
|
|
return(result)
|
|
}
|
|
|
|
# Analysis of first isolate ----
|
|
all_first <- x %>%
|
|
mutate(other_pat_or_mo = if_else(newvar_patient_id == lag(newvar_patient_id)
|
|
& newvar_genus_species == lag(newvar_genus_species),
|
|
FALSE,
|
|
TRUE)) %>%
|
|
group_by(newvar_patient_id,
|
|
newvar_genus_species) %>%
|
|
mutate(more_than_episode_ago = identify_new_year(x = newvar_date,
|
|
episode_days = episode_days)) %>%
|
|
ungroup()
|
|
|
|
weighted.notice <- ""
|
|
if (!is.null(col_keyantibiotics)) {
|
|
weighted.notice <- "weighted "
|
|
if (info == TRUE) {
|
|
if (type == "keyantibiotics") {
|
|
message(blue(paste0("[Criterion] Inclusion based on key antibiotics, ",
|
|
ifelse(ignore_I == FALSE, "not ", ""),
|
|
"ignoring I")))
|
|
}
|
|
if (type == "points") {
|
|
message(blue(paste0("[Criterion] Inclusion based on key antibiotics, using points threshold of "
|
|
, points_threshold)))
|
|
}
|
|
}
|
|
type_param <- type
|
|
|
|
all_first <- all_first %>%
|
|
mutate(key_ab_lag = lag(key_ab)) %>%
|
|
mutate(key_ab_other = !key_antibiotics_equal(y = key_ab,
|
|
z = key_ab_lag,
|
|
type = type_param,
|
|
ignore_I = ignore_I,
|
|
points_threshold = points_threshold,
|
|
info = info)) %>%
|
|
mutate(
|
|
real_first_isolate =
|
|
if_else(
|
|
newvar_row_index_sorted %>% between(row.start, row.end)
|
|
& newvar_genus_species != ""
|
|
& (other_pat_or_mo | more_than_episode_ago | key_ab_other),
|
|
TRUE,
|
|
FALSE))
|
|
|
|
} else {
|
|
# no key antibiotics
|
|
all_first <- all_first %>%
|
|
mutate(
|
|
real_first_isolate =
|
|
if_else(
|
|
newvar_row_index_sorted %>% between(row.start, row.end)
|
|
& newvar_genus_species != ""
|
|
& (other_pat_or_mo | more_than_episode_ago),
|
|
TRUE,
|
|
FALSE))
|
|
|
|
}
|
|
|
|
# first one as TRUE
|
|
all_first[row.start, "real_first_isolate"] <- TRUE
|
|
# no tests that should be included, or ICU
|
|
if (!is.null(col_testcode)) {
|
|
all_first[which(all_first[, col_testcode] %in% tolower(testcodes_exclude)), "real_first_isolate"] <- FALSE
|
|
}
|
|
if (icu_exclude == TRUE) {
|
|
all_first[which(all_first[, col_icu] == TRUE), "real_first_isolate"] <- FALSE
|
|
}
|
|
|
|
decimal.mark <- getOption("OutDec")
|
|
big.mark <- ifelse(decimal.mark != ",", ",", ".")
|
|
|
|
# handle empty microorganisms
|
|
if (any(all_first$newvar_mo == "UNKNOWN", na.rm = TRUE) & info == TRUE) {
|
|
message(blue(paste0("NOTE: ", ifelse(include_unknown == TRUE, "Included ", "Excluded "),
|
|
format(sum(all_first$newvar_mo == "UNKNOWN"),
|
|
decimal.mark = decimal.mark, big.mark = big.mark),
|
|
" isolates with a microbial ID 'UNKNOWN' (column `", bold(col_mo), "`)")))
|
|
}
|
|
all_first[which(all_first$newvar_mo == "UNKNOWN"), "real_first_isolate"] <- include_unknown
|
|
|
|
# exclude all NAs
|
|
if (any(is.na(all_first$newvar_mo)) & info == TRUE) {
|
|
message(blue(paste0("NOTE: Excluded ", format(sum(is.na(all_first$newvar_mo)),
|
|
decimal.mark = decimal.mark, big.mark = big.mark),
|
|
" isolates with a microbial ID 'NA' (column `", bold(col_mo), "`)")))
|
|
}
|
|
all_first[which(is.na(all_first$newvar_mo)), "real_first_isolate"] <- FALSE
|
|
|
|
# arrange back according to original sorting again
|
|
all_first <- all_first %>%
|
|
arrange(newvar_row_index) %>%
|
|
pull(real_first_isolate)
|
|
|
|
if (info == TRUE) {
|
|
n_found <- base::sum(all_first, na.rm = TRUE)
|
|
p_found_total <- percentage(n_found / nrow(x))
|
|
p_found_scope <- percentage(n_found / scope.size)
|
|
# mark up number of found
|
|
n_found <- base::format(n_found, big.mark = big.mark, decimal.mark = decimal.mark)
|
|
if (p_found_total != p_found_scope) {
|
|
msg_txt <- paste0("=> Found ",
|
|
bold(paste0(n_found, " first ", weighted.notice, "isolates")),
|
|
" (", p_found_scope, " within scope and ", p_found_total, " of total)")
|
|
} else {
|
|
msg_txt <- paste0("=> Found ",
|
|
bold(paste0(n_found, " first ", weighted.notice, "isolates")),
|
|
" (", p_found_total, " of total)")
|
|
}
|
|
base::message(msg_txt)
|
|
}
|
|
|
|
all_first
|
|
|
|
}
|
|
|
|
#' @rdname first_isolate
|
|
#' @importFrom dplyr filter
|
|
#' @export
|
|
filter_first_isolate <- function(x,
|
|
col_date = NULL,
|
|
col_patient_id = NULL,
|
|
col_mo = NULL,
|
|
...) {
|
|
filter(x, first_isolate(x = x,
|
|
col_date = col_date,
|
|
col_patient_id = col_patient_id,
|
|
col_mo = col_mo,
|
|
...))
|
|
}
|
|
|
|
#' @rdname first_isolate
|
|
#' @importFrom dplyr %>% mutate filter
|
|
#' @export
|
|
filter_first_weighted_isolate <- function(x,
|
|
col_date = NULL,
|
|
col_patient_id = NULL,
|
|
col_mo = NULL,
|
|
col_keyantibiotics = NULL,
|
|
...) {
|
|
tbl_keyab <- x %>%
|
|
mutate(keyab = suppressMessages(key_antibiotics(.,
|
|
col_mo = col_mo,
|
|
...))) %>%
|
|
mutate(firsts = first_isolate(.,
|
|
col_date = col_date,
|
|
col_patient_id = col_patient_id,
|
|
col_mo = col_mo,
|
|
col_keyantibiotics = "keyab",
|
|
...))
|
|
x[which(tbl_keyab$firsts == TRUE), ]
|
|
}
|