mirror of
https://github.com/msberends/AMR.git
synced 2024-12-26 05:26:13 +01:00
190 lines
7.6 KiB
R
190 lines
7.6 KiB
R
# ==================================================================== #
|
|
# TITLE #
|
|
# Antimicrobial Resistance (AMR) Analysis for R #
|
|
# #
|
|
# SOURCE #
|
|
# https://github.com/msberends/AMR #
|
|
# #
|
|
# LICENCE #
|
|
# (c) 2018-2020 Berends MS, Luz CF et al. #
|
|
# Developed at the University of Groningen, the Netherlands, in #
|
|
# collaboration with non-profit organisations Certe Medical #
|
|
# Diagnostics & Advice, and University Medical Center Groningen. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# #
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
# how to conduct AMR analysis: https://msberends.github.io/AMR/ #
|
|
# ==================================================================== #
|
|
|
|
#' Antibiotic class selectors
|
|
#'
|
|
#' Use these selection helpers inside any function that allows [Tidyverse selection helpers](https://tidyselect.r-lib.org/reference/language.html), such as [`select()`][dplyr::select()] and [`pivot_longer()`][tidyr::pivot_longer()]. They help to select the columns of antibiotics that are of a specific antibiotic class, without the need to define the columns or antibiotic abbreviations.
|
|
#' @inheritParams filter_ab_class
|
|
#' @details All columns will be searched for known antibiotic names, abbreviations, brand names and codes (ATC, EARS-Net, WHO, etc.) in the [antibiotics] data set. This means that a selector like e.g. [aminoglycosides()] will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc.
|
|
#'
|
|
#' **N.B. These functions require the `tidyselect` package to be installed**, that comes with the `dplyr` package. An error will be thrown if the `tidyselect` package is not installed, or if the functions are used outside a function that allows [Tidyverse selection helpers](https://tidyselect.r-lib.org/reference/language.html) such as [`select()`][dplyr::select()] and [`pivot_longer()`][tidyr::pivot_longer()]`.
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @seealso [filter_ab_class()] for the `filter()` equivalent.
|
|
#' @name antibiotic_class_selectors
|
|
#' @export
|
|
#' @inheritSection AMR Reference data publicly available
|
|
#' @inheritSection AMR Read more on our website!
|
|
#' @examples
|
|
#' if (require("dplyr")) {
|
|
#'
|
|
#' # this will select columns 'IPM' (imipenem) and 'MEM' (meropenem):
|
|
#' example_isolates %>%
|
|
#' select(carbapenems())
|
|
#'
|
|
#' # this will select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB':
|
|
#' example_isolates %>%
|
|
#' select(mo, aminoglycosides())
|
|
#'
|
|
#' # this will select columns 'mo' and all antimycobacterial drugs ('RIF'):
|
|
#' example_isolates %>%
|
|
#' select(mo, ab_class("mycobact"))
|
|
#'
|
|
#'
|
|
#' # get bug/drug combinations for only macrolides in Gram-positives:
|
|
#' example_isolates %>%
|
|
#' filter(mo_is_gram_positive()) %>%
|
|
#' select(mo, macrolides()) %>%
|
|
#' bug_drug_combinations() %>%
|
|
#' format()
|
|
#'
|
|
#'
|
|
#' data.frame(some_column = "some_value",
|
|
#' J01CA01 = "S") %>% # ATC code of ampicillin
|
|
#' select(penicillins()) # only the 'J01CA01' column will be selected
|
|
#'
|
|
#' }
|
|
ab_class <- function(ab_class) {
|
|
ab_selector(ab_class, function_name = "ab_class")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
aminoglycosides <- function() {
|
|
ab_selector("aminoglycoside", function_name = "aminoglycosides")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
carbapenems <- function() {
|
|
ab_selector("carbapenem", function_name = "carbapenems")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
cephalosporins <- function() {
|
|
ab_selector("cephalosporin", function_name = "cephalosporins")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
cephalosporins_1st <- function() {
|
|
ab_selector("cephalosporins.*1", function_name = "cephalosporins_1st")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
cephalosporins_2nd <- function() {
|
|
ab_selector("cephalosporins.*2", function_name = "cephalosporins_2nd")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
cephalosporins_3rd <- function() {
|
|
ab_selector("cephalosporins.*3", function_name = "cephalosporins_3rd")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
cephalosporins_4th <- function() {
|
|
ab_selector("cephalosporins.*4", function_name = "cephalosporins_4th")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
cephalosporins_5th <- function() {
|
|
ab_selector("cephalosporins.*5", function_name = "cephalosporins_5th")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
fluoroquinolones <- function() {
|
|
ab_selector("fluoroquinolone", function_name = "fluoroquinolones")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
glycopeptides <- function() {
|
|
ab_selector("glycopeptide", function_name = "glycopeptides")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
macrolides <- function() {
|
|
ab_selector("macrolide", function_name = "macrolides")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
penicillins <- function() {
|
|
ab_selector("penicillin", function_name = "penicillins")
|
|
}
|
|
|
|
#' @rdname antibiotic_class_selectors
|
|
#' @export
|
|
tetracyclines <- function() {
|
|
ab_selector("tetracycline", function_name = "tetracyclines")
|
|
}
|
|
|
|
ab_selector <- function(ab_class, function_name) {
|
|
meet_criteria(ab_class, allow_class = "character", has_length = 1, .call_depth = 1)
|
|
meet_criteria(function_name, allow_class = "character", has_length = 1, .call_depth = 1)
|
|
|
|
peek_vars_tidyselect <- import_fn("peek_vars", "tidyselect")
|
|
vars_vct <- peek_vars_tidyselect(fn = function_name)
|
|
vars_df <- data.frame(as.list(vars_vct), stringsAsFactors = FALSE)[1, , drop = FALSE]
|
|
colnames(vars_df) <- vars_vct
|
|
ab_in_data <- get_column_abx(vars_df, info = FALSE)
|
|
|
|
if (length(ab_in_data) == 0) {
|
|
message_("No antimicrobial agents found.")
|
|
return(NULL)
|
|
}
|
|
|
|
ab_reference <- subset(antibiotics,
|
|
group %like% ab_class |
|
|
atc_group1 %like% ab_class |
|
|
atc_group2 %like% ab_class)
|
|
ab_group <- find_ab_group(ab_class)
|
|
if (ab_group == "") {
|
|
ab_group <- paste0("'", ab_class, "'")
|
|
examples <- ""
|
|
} else {
|
|
examples <- paste0(" (such as ", find_ab_names(ab_class, 2), ")")
|
|
}
|
|
# get the columns with a group names in the chosen ab class
|
|
agents <- ab_in_data[names(ab_in_data) %in% ab_reference$ab]
|
|
if (length(agents) == 0) {
|
|
message_("No antimicrobial agents of class ", ab_group, " found", examples, ".")
|
|
} else {
|
|
message_("Selecting ", ab_group, ": ",
|
|
paste(paste0("'", font_bold(agents, collapse = NULL),
|
|
"' (", ab_name(names(agents), tolower = TRUE, language = NULL), ")"),
|
|
collapse = ", "),
|
|
as_note = FALSE,
|
|
extra_indent = nchar(paste0("Selecting ", ab_group, ": ")))
|
|
}
|
|
unname(agents)
|
|
}
|