AMR/docs/reference/resistance_predict.html

480 lines
29 KiB
HTML

<!-- Generated by pkgdown: do not edit by hand -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Predict antimicrobial resistance — resistance_predict • AMR (for R)</title>
<!-- favicons -->
<link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png">
<link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png">
<link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png" />
<link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png" />
<link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png" />
<link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png" />
<!-- jquery -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
<!-- Bootstrap -->
<link href="https://cdnjs.cloudflare.com/ajax/libs/bootswatch/3.4.0/flatly/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous" />
<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<!-- bootstrap-toc -->
<link rel="stylesheet" href="../bootstrap-toc.css">
<script src="../bootstrap-toc.js"></script>
<!-- Font Awesome icons -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
<!-- clipboard.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
<!-- headroom.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
<!-- pkgdown -->
<link href="../pkgdown.css" rel="stylesheet">
<script src="../pkgdown.js"></script>
<link href="../extra.css" rel="stylesheet">
<script src="../extra.js"></script>
<meta property="og:title" content="Predict antimicrobial resistance — resistance_predict" />
<meta property="og:description" content="Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns se_min and se_max. See Examples for a real live example." />
<meta property="og:image" content="https://msberends.github.io/AMR/logo.png" />
<!-- mathjax -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container template-reference-topic">
<header>
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.6.0.9023</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../index.html">
<span class="fas fa-home"></span>
Home
</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
<span class="fas fa-question-circle"></span>
How to
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="../articles/AMR.html">
<span class="fas fa-directions"></span>
Conduct AMR analysis
</a>
</li>
<li>
<a href="../articles/resistance_predict.html">
<span class="fas fa-dice"></span>
Predict antimicrobial resistance
</a>
</li>
<li>
<a href="../articles/datasets.html">
<span class="fas fa-database"></span>
Data sets for download / own use
</a>
</li>
<li>
<a href="../articles/PCA.html">
<span class="fas fa-compress"></span>
Conduct principal component analysis for AMR
</a>
</li>
<li>
<a href="../articles/MDR.html">
<span class="fas fa-skull-crossbones"></span>
Determine multi-drug resistance (MDR)
</a>
</li>
<li>
<a href="../articles/WHONET.html">
<span class="fas fa-globe-americas"></span>
Work with WHONET data
</a>
</li>
<li>
<a href="../articles/SPSS.html">
<span class="fas fa-file-upload"></span>
Import data from SPSS/SAS/Stata
</a>
</li>
<li>
<a href="../articles/EUCAST.html">
<span class="fas fa-exchange-alt"></span>
Apply EUCAST rules
</a>
</li>
<li>
<a href="../reference/mo_property.html">
<span class="fas fa-bug"></span>
Get properties of a microorganism
</a>
</li>
<li>
<a href="../reference/ab_property.html">
<span class="fas fa-capsules"></span>
Get properties of an antibiotic
</a>
</li>
<li>
<a href="../articles/benchmarks.html">
<span class="fas fa-shipping-fast"></span>
Other: benchmarks
</a>
</li>
</ul>
</li>
<li>
<a href="../reference/index.html">
<span class="fas fa-book-open"></span>
Manual
</a>
</li>
<li>
<a href="../authors.html">
<span class="fas fa-users"></span>
Authors
</a>
</li>
<li>
<a href="../news/index.html">
<span class="far fa-newspaper"></span>
Changelog
</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/msberends/AMR">
<span class="fab fa-github"></span>
Source Code
</a>
</li>
<li>
<a href="../survey.html">
<span class="fas fa-clipboard-list"></span>
Survey
</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header>
<div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Predict antimicrobial resistance</h1>
<small class="dont-index">Source: <a href='https://github.com/msberends/AMR/blob/master/R/resistance_predict.R'><code>R/resistance_predict.R</code></a></small>
<div class="hidden name"><code>resistance_predict.Rd</code></div>
</div>
<div class="ref-description">
<p>Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns <code>se_min</code> and <code>se_max</code>. See <em>Examples</em> for a real live example.</p>
</div>
<pre class="usage"><span class='fu'>resistance_predict</span><span class='op'>(</span>
<span class='va'>x</span>,
<span class='va'>col_ab</span>,
col_date <span class='op'>=</span> <span class='cn'>NULL</span>,
year_min <span class='op'>=</span> <span class='cn'>NULL</span>,
year_max <span class='op'>=</span> <span class='cn'>NULL</span>,
year_every <span class='op'>=</span> <span class='fl'>1</span>,
minimum <span class='op'>=</span> <span class='fl'>30</span>,
model <span class='op'>=</span> <span class='cn'>NULL</span>,
I_as_S <span class='op'>=</span> <span class='cn'>TRUE</span>,
preserve_measurements <span class='op'>=</span> <span class='cn'>TRUE</span>,
info <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/interactive.html'>interactive</a></span><span class='op'>(</span><span class='op'>)</span>,
<span class='va'>...</span>
<span class='op'>)</span>
<span class='fu'>rsi_predict</span><span class='op'>(</span>
<span class='va'>x</span>,
<span class='va'>col_ab</span>,
col_date <span class='op'>=</span> <span class='cn'>NULL</span>,
year_min <span class='op'>=</span> <span class='cn'>NULL</span>,
year_max <span class='op'>=</span> <span class='cn'>NULL</span>,
year_every <span class='op'>=</span> <span class='fl'>1</span>,
minimum <span class='op'>=</span> <span class='fl'>30</span>,
model <span class='op'>=</span> <span class='cn'>NULL</span>,
I_as_S <span class='op'>=</span> <span class='cn'>TRUE</span>,
preserve_measurements <span class='op'>=</span> <span class='cn'>TRUE</span>,
info <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/interactive.html'>interactive</a></span><span class='op'>(</span><span class='op'>)</span>,
<span class='va'>...</span>
<span class='op'>)</span>
<span class='co'># S3 method for resistance_predict</span>
<span class='fu'><a href='plot.html'>plot</a></span><span class='op'>(</span><span class='va'>x</span>, main <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='st'>"Resistance Prediction of"</span>, <span class='va'>x_name</span><span class='op'>)</span>, <span class='va'>...</span><span class='op'>)</span>
<span class='co'># S3 method for resistance_predict</span>
<span class='fu'><a href='https://ggplot2.tidyverse.org/reference/ggplot.html'>ggplot</a></span><span class='op'>(</span><span class='va'>x</span>, main <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='st'>"Resistance Prediction of"</span>, <span class='va'>x_name</span><span class='op'>)</span>, ribbon <span class='op'>=</span> <span class='cn'>TRUE</span>, <span class='va'>...</span><span class='op'>)</span>
<span class='fu'>ggplot_rsi_predict</span><span class='op'>(</span>
<span class='va'>x</span>,
main <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='st'>"Resistance Prediction of"</span>, <span class='va'>x_name</span><span class='op'>)</span>,
ribbon <span class='op'>=</span> <span class='cn'>TRUE</span>,
<span class='va'>...</span>
<span class='op'>)</span></pre>
<h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
<table class="ref-arguments">
<colgroup><col class="name" /><col class="desc" /></colgroup>
<tr>
<th>x</th>
<td><p>a <a href='https://rdrr.io/r/base/data.frame.html'>data.frame</a> containing isolates. Can be left blank for automatic determination, see <em>Examples</em>.</p></td>
</tr>
<tr>
<th>col_ab</th>
<td><p>column name of <code>x</code> containing antimicrobial interpretations (<code>"R"</code>, <code>"I"</code> and <code>"S"</code>)</p></td>
</tr>
<tr>
<th>col_date</th>
<td><p>column name of the date, will be used to calculate years if this column doesn't consist of years already, defaults to the first column of with a date class</p></td>
</tr>
<tr>
<th>year_min</th>
<td><p>lowest year to use in the prediction model, dafaults to the lowest year in <code>col_date</code></p></td>
</tr>
<tr>
<th>year_max</th>
<td><p>highest year to use in the prediction model, defaults to 10 years after today</p></td>
</tr>
<tr>
<th>year_every</th>
<td><p>unit of sequence between lowest year found in the data and <code>year_max</code></p></td>
</tr>
<tr>
<th>minimum</th>
<td><p>minimal amount of available isolates per year to include. Years containing less observations will be estimated by the model.</p></td>
</tr>
<tr>
<th>model</th>
<td><p>the statistical model of choice. This could be a generalised linear regression model with binomial distribution (i.e. using `glm(..., family = binomial)``, assuming that a period of zero resistance was followed by a period of increasing resistance leading slowly to more and more resistance. See <em>Details</em> for all valid options.</p></td>
</tr>
<tr>
<th>I_as_S</th>
<td><p>a <a href='https://rdrr.io/r/base/logical.html'>logical</a> to indicate whether values <code>"I"</code> should be treated as <code>"S"</code> (will otherwise be treated as <code>"R"</code>). The default, <code>TRUE</code>, follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section <em>Interpretation of S, I and R</em> below.</p></td>
</tr>
<tr>
<th>preserve_measurements</th>
<td><p>a <a href='https://rdrr.io/r/base/logical.html'>logical</a> to indicate whether predictions of years that are actually available in the data should be overwritten by the original data. The standard errors of those years will be <code>NA</code>.</p></td>
</tr>
<tr>
<th>info</th>
<td><p>a <a href='https://rdrr.io/r/base/logical.html'>logical</a> to indicate whether textual analysis should be printed with the name and <code><a href='https://rdrr.io/r/base/summary.html'>summary()</a></code> of the statistical model.</p></td>
</tr>
<tr>
<th>...</th>
<td><p>arguments passed on to functions</p></td>
</tr>
<tr>
<th>main</th>
<td><p>title of the plot</p></td>
</tr>
<tr>
<th>ribbon</th>
<td><p>a <a href='https://rdrr.io/r/base/logical.html'>logical</a> to indicate whether a ribbon should be shown (default) or error bars</p></td>
</tr>
</table>
<h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
<p>A <a href='https://rdrr.io/r/base/data.frame.html'>data.frame</a> with extra class <code>resistance_predict</code> with columns:</p><ul>
<li><p><code>year</code></p></li>
<li><p><code>value</code>, the same as <code>estimated</code> when <code>preserve_measurements = FALSE</code>, and a combination of <code>observed</code> and <code>estimated</code> otherwise</p></li>
<li><p><code>se_min</code>, the lower bound of the standard error with a minimum of <code>0</code> (so the standard error will never go below 0%)</p></li>
<li><p><code>se_max</code> the upper bound of the standard error with a maximum of <code>1</code> (so the standard error will never go above 100%)</p></li>
<li><p><code>observations</code>, the total number of available observations in that year, i.e. \(S + I + R\)</p></li>
<li><p><code>observed</code>, the original observed resistant percentages</p></li>
<li><p><code>estimated</code>, the estimated resistant percentages, calculated by the model</p></li>
</ul>
<p>Furthermore, the model itself is available as an attribute: <code>attributes(x)$model</code>, see <em>Examples</em>.</p>
<h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
<p>Valid options for the statistical model (argument <code>model</code>) are:</p><ul>
<li><p><code>"binomial"</code> or <code>"binom"</code> or <code>"logit"</code>: a generalised linear regression model with binomial distribution</p></li>
<li><p><code>"loglin"</code> or <code>"poisson"</code>: a generalised log-linear regression model with poisson distribution</p></li>
<li><p><code>"lin"</code> or <code>"linear"</code>: a linear regression model</p></li>
</ul>
<h2 class="hasAnchor" id="stable-lifecycle"><a class="anchor" href="#stable-lifecycle"></a>Stable Lifecycle</h2>
<p><img src='figures/lifecycle_stable.svg' style=margin-bottom:5px /> <br />
The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</strong>. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.</p>
<p>If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.</p>
<h2 class="hasAnchor" id="interpretation-of-r-and-s-i"><a class="anchor" href="#interpretation-of-r-and-s-i"></a>Interpretation of R and S/I</h2>
<p>In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories R and S/I as shown below (<a href='https://www.eucast.org/newsiandr/'>https://www.eucast.org/newsiandr/</a>).</p><ul>
<li><p><strong>R = Resistant</strong><br />
A microorganism is categorised as <em>Resistant</em> when there is a high likelihood of therapeutic failure even when there is increased exposure. Exposure is a function of how the mode of administration, dose, dosing interval, infusion time, as well as distribution and excretion of the antimicrobial agent will influence the infecting organism at the site of infection.</p></li>
<li><p><strong>S = Susceptible</strong><br />
A microorganism is categorised as <em>Susceptible, standard dosing regimen</em>, when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.</p></li>
<li><p><strong>I = Increased exposure, but still susceptible</strong><br />
A microorganism is categorised as <em>Susceptible, Increased exposure</em> when there is a high likelihood of therapeutic success because exposure to the agent is increased by adjusting the dosing regimen or by its concentration at the site of infection.</p></li>
</ul>
<p>This AMR package honours this new insight. Use <code><a href='proportion.html'>susceptibility()</a></code> (equal to <code><a href='proportion.html'>proportion_SI()</a></code>) to determine antimicrobial susceptibility and <code><a href='count.html'>count_susceptible()</a></code> (equal to <code><a href='count.html'>count_SI()</a></code>) to count susceptible isolates.</p>
<h2 class="hasAnchor" id="read-more-on-our-website-"><a class="anchor" href="#read-more-on-our-website-"></a>Read more on Our Website!</h2>
<p>On our website <a href='https://msberends.github.io/AMR/'>https://msberends.github.io/AMR/</a> you can find <a href='https://msberends.github.io/AMR/articles/AMR.html'>a comprehensive tutorial</a> about how to conduct AMR data analysis, the <a href='https://msberends.github.io/AMR/reference/'>complete documentation of all functions</a> and <a href='https://msberends.github.io/AMR/articles/WHONET.html'>an example analysis using WHONET data</a>. As we would like to better understand the backgrounds and needs of our users, please <a href='https://msberends.github.io/AMR/survey.html'>participate in our survey</a>!</p>
<h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2>
<div class='dont-index'><p>The <code><a href='proportion.html'>proportion()</a></code> functions to calculate resistance</p>
<p>Models: <code><a href='https://rdrr.io/r/stats/lm.html'>lm()</a></code> <code><a href='https://rdrr.io/r/stats/glm.html'>glm()</a></code></p></div>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><span class='va'>x</span> <span class='op'>&lt;-</span> <span class='fu'>resistance_predict</span><span class='op'>(</span><span class='va'>example_isolates</span>,
col_ab <span class='op'>=</span> <span class='st'>"AMX"</span>,
year_min <span class='op'>=</span> <span class='fl'>2010</span>,
model <span class='op'>=</span> <span class='st'>"binomial"</span><span class='op'>)</span>
<span class='fu'><a href='plot.html'>plot</a></span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span>
<span class='kw'>if</span> <span class='op'>(</span><span class='kw'><a href='https://rdrr.io/r/base/library.html'>require</a></span><span class='op'>(</span><span class='st'><a href='https://ggplot2.tidyverse.org'>"ggplot2"</a></span><span class='op'>)</span><span class='op'>)</span> <span class='op'>{</span>
<span class='fu'>ggplot_rsi_predict</span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span>
<span class='op'>}</span>
<span class='co'># using dplyr:</span>
<span class='kw'>if</span> <span class='op'>(</span><span class='kw'><a href='https://rdrr.io/r/base/library.html'>require</a></span><span class='op'>(</span><span class='st'><a href='https://dplyr.tidyverse.org'>"dplyr"</a></span><span class='op'>)</span><span class='op'>)</span> <span class='op'>{</span>
<span class='va'>x</span> <span class='op'>&lt;-</span> <span class='va'>example_isolates</span> <span class='op'>%&gt;%</span>
<span class='fu'><a href='first_isolate.html'>filter_first_isolate</a></span><span class='op'>(</span><span class='op'>)</span> <span class='op'>%&gt;%</span>
<span class='fu'><a href='https://dplyr.tidyverse.org/reference/filter.html'>filter</a></span><span class='op'>(</span><span class='fu'><a href='mo_property.html'>mo_genus</a></span><span class='op'>(</span><span class='va'>mo</span><span class='op'>)</span> <span class='op'>==</span> <span class='st'>"Staphylococcus"</span><span class='op'>)</span> <span class='op'>%&gt;%</span>
<span class='fu'>resistance_predict</span><span class='op'>(</span><span class='st'>"PEN"</span>, model <span class='op'>=</span> <span class='st'>"binomial"</span><span class='op'>)</span>
<span class='fu'><a href='plot.html'>plot</a></span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span>
<span class='co'># get the model from the object</span>
<span class='va'>mymodel</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/attributes.html'>attributes</a></span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span><span class='op'>$</span><span class='va'>model</span>
<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>mymodel</span><span class='op'>)</span>
<span class='op'>}</span>
<span class='co'># create nice plots with ggplot2 yourself</span>
<span class='kw'>if</span> <span class='op'>(</span><span class='kw'><a href='https://rdrr.io/r/base/library.html'>require</a></span><span class='op'>(</span><span class='st'><a href='https://dplyr.tidyverse.org'>"dplyr"</a></span><span class='op'>)</span> <span class='op'>&amp;</span> <span class='kw'><a href='https://rdrr.io/r/base/library.html'>require</a></span><span class='op'>(</span><span class='st'><a href='https://ggplot2.tidyverse.org'>"ggplot2"</a></span><span class='op'>)</span><span class='op'>)</span> <span class='op'>{</span>
<span class='va'>data</span> <span class='op'>&lt;-</span> <span class='va'>example_isolates</span> <span class='op'>%&gt;%</span>
<span class='fu'><a href='https://dplyr.tidyverse.org/reference/filter.html'>filter</a></span><span class='op'>(</span><span class='va'>mo</span> <span class='op'>==</span> <span class='fu'><a href='as.mo.html'>as.mo</a></span><span class='op'>(</span><span class='st'>"E. coli"</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>%&gt;%</span>
<span class='fu'>resistance_predict</span><span class='op'>(</span>col_ab <span class='op'>=</span> <span class='st'>"AMX"</span>,
col_date <span class='op'>=</span> <span class='st'>"date"</span>,
model <span class='op'>=</span> <span class='st'>"binomial"</span>,
info <span class='op'>=</span> <span class='cn'>FALSE</span>,
minimum <span class='op'>=</span> <span class='fl'>15</span><span class='op'>)</span>
<span class='fu'><a href='https://ggplot2.tidyverse.org/reference/ggplot.html'>ggplot</a></span><span class='op'>(</span><span class='va'>data</span>,
<span class='fu'><a href='https://ggplot2.tidyverse.org/reference/aes.html'>aes</a></span><span class='op'>(</span>x <span class='op'>=</span> <span class='va'>year</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'><a href='https://ggplot2.tidyverse.org/reference/geom_bar.html'>geom_col</a></span><span class='op'>(</span><span class='fu'><a href='https://ggplot2.tidyverse.org/reference/aes.html'>aes</a></span><span class='op'>(</span>y <span class='op'>=</span> <span class='va'>value</span><span class='op'>)</span>,
fill <span class='op'>=</span> <span class='st'>"grey75"</span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'><a href='https://ggplot2.tidyverse.org/reference/geom_linerange.html'>geom_errorbar</a></span><span class='op'>(</span><span class='fu'><a href='https://ggplot2.tidyverse.org/reference/aes.html'>aes</a></span><span class='op'>(</span>ymin <span class='op'>=</span> <span class='va'>se_min</span>,
ymax <span class='op'>=</span> <span class='va'>se_max</span><span class='op'>)</span>,
colour <span class='op'>=</span> <span class='st'>"grey50"</span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'><a href='https://ggplot2.tidyverse.org/reference/scale_continuous.html'>scale_y_continuous</a></span><span class='op'>(</span>limits <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>1</span><span class='op'>)</span>,
breaks <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/seq.html'>seq</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>1</span>, <span class='fl'>0.1</span><span class='op'>)</span>,
labels <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste0</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/seq.html'>seq</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>100</span>, <span class='fl'>10</span><span class='op'>)</span>, <span class='st'>"%"</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'><a href='https://ggplot2.tidyverse.org/reference/labs.html'>labs</a></span><span class='op'>(</span>title <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/expression.html'>expression</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='st'>"Forecast of Amoxicillin Resistance in "</span>,
<span class='fu'><a href='https://rdrr.io/r/grDevices/plotmath.html'>italic</a></span><span class='op'>(</span><span class='st'>"E. coli"</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span>,
y <span class='op'>=</span> <span class='st'>"%R"</span>,
x <span class='op'>=</span> <span class='st'>"Year"</span><span class='op'>)</span> <span class='op'>+</span>
<span class='fu'><a href='https://ggplot2.tidyverse.org/reference/ggtheme.html'>theme_minimal</a></span><span class='op'>(</span>base_size <span class='op'>=</span> <span class='fl'>13</span><span class='op'>)</span>
<span class='op'>}</span>
</pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top">
<h2 data-toc-skip>Contents</h2>
</nav>
</div>
</div>
<footer>
<div class="copyright">
<p>Developed by <a href='https://www.rug.nl/staff/m.s.berends/'>Matthijs S. Berends</a>, <a href='https://www.rug.nl/staff/c.f.luz/'>Christian F. Luz</a>, <a href='https://www.rug.nl/staff/a.w.friedrich/'>Alexander W. Friedrich</a>, <a href='https://www.rug.nl/staff/b.sinha/'>Bhanu N. M. Sinha</a>, <a href='https://www.rug.nl/staff/c.j.albers/'>Casper J. Albers</a>, <a href='https://www.rug.nl/staff/c.glasner/'>Corinna Glasner</a>.</p>
</div>
<div class="pkgdown">
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
</div>
</footer>
</div>
</body>
</html>