mirror of
https://github.com/msberends/AMR.git
synced 2024-12-25 20:46:11 +01:00
231 lines
9.8 KiB
R
Executable File
231 lines
9.8 KiB
R
Executable File
# ==================================================================== #
|
|
# TITLE #
|
|
# Antimicrobial Resistance (AMR) Analysis #
|
|
# #
|
|
# SOURCE #
|
|
# https://gitlab.com/msberends/AMR #
|
|
# #
|
|
# LICENCE #
|
|
# (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# #
|
|
# This R package was created for academic research and was publicly #
|
|
# released in the hope that it will be useful, but it comes WITHOUT #
|
|
# ANY WARRANTY OR LIABILITY. #
|
|
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
|
|
# ==================================================================== #
|
|
|
|
#' Guess antibiotic column
|
|
#'
|
|
#' This tries to find a column name in a data set based on information from the \code{\link{antibiotics}} data set. Also supports WHONET abbreviations.
|
|
#' @param x a \code{data.frame}
|
|
#' @param search_string a text to search \code{x} for, will be checked with \code{\link{as.ab}} if this value is not a column in \code{x}
|
|
#' @param verbose a logical to indicate whether additional info should be printed
|
|
#' @details You can look for an antibiotic (trade) name or abbreviation and it will search \code{x} and the \code{\link{antibiotics}} data set for any column containing a name or code of that antibiotic. \strong{Longer columns names take precendence over shorter column names.}
|
|
#' @importFrom dplyr %>% select filter_all any_vars
|
|
#' @importFrom crayon blue
|
|
#' @return A column name of \code{x}, or \code{NULL} when no result is found.
|
|
#' @export
|
|
#' @inheritSection AMR Read more on our website!
|
|
#' @examples
|
|
#' df <- data.frame(amox = "S",
|
|
#' tetr = "R")
|
|
#'
|
|
#' guess_ab_col(df, "amoxicillin")
|
|
#' # [1] "amox"
|
|
#' guess_ab_col(df, "J01AA07") # ATC code of tetracycline
|
|
#' # [1] "tetr"
|
|
#'
|
|
#' guess_ab_col(df, "J01AA07", verbose = TRUE)
|
|
#' # Note: Using column `tetr` as input for "J01AA07".
|
|
#' # [1] "tetr"
|
|
#'
|
|
#' # WHONET codes
|
|
#' df <- data.frame(AMP_ND10 = "R",
|
|
#' AMC_ED20 = "S")
|
|
#' guess_ab_col(df, "ampicillin")
|
|
#' # [1] "AMP_ND10"
|
|
#' guess_ab_col(df, "J01CR02")
|
|
#' # [1] "AMC_ED20"
|
|
#' guess_ab_col(df, as.ab("augmentin"))
|
|
#' # [1] "AMC_ED20"
|
|
#'
|
|
#' # Longer names take precendence:
|
|
#' df <- data.frame(AMP_ED2 = "S",
|
|
#' AMP_ED20 = "S")
|
|
#' guess_ab_col(df, "ampicillin")
|
|
#' # [1] "AMP_ED20"
|
|
guess_ab_col <- function(x = NULL, search_string = NULL, verbose = FALSE) {
|
|
if (is.null(x) & is.null(search_string)) {
|
|
return(as.name("guess_ab_col"))
|
|
}
|
|
if (!is.data.frame(x)) {
|
|
stop("`x` must be a data.frame")
|
|
}
|
|
|
|
if (length(search_string) > 1) {
|
|
warning("argument 'search_string' has length > 1 and only the first element will be used")
|
|
search_string <- search_string[1]
|
|
}
|
|
search_string <- as.character(search_string)
|
|
|
|
if (search_string %in% colnames(x)) {
|
|
ab_result <- search_string
|
|
} else {
|
|
search_string.ab <- suppressWarnings(as.ab(search_string))
|
|
if (search_string.ab %in% colnames(x)) {
|
|
ab_result <- colnames(x)[colnames(x) == search_string.ab][1L]
|
|
|
|
} else if (any(tolower(colnames(x)) %in% tolower(unlist(ab_property(search_string.ab, "abbreviations"))))) {
|
|
ab_result <- colnames(x)[tolower(colnames(x)) %in% tolower(unlist(ab_property(search_string.ab, "abbreviations")))][1L]
|
|
|
|
} else {
|
|
# sort colnames on length - longest first
|
|
cols <- colnames(x[, x %>% colnames() %>% nchar() %>% order() %>% rev()])
|
|
df_trans <- data.frame(cols = cols,
|
|
abs = suppressWarnings(as.ab(cols)),
|
|
stringsAsFactors = FALSE)
|
|
ab_result <- df_trans[which(df_trans$abs == search_string.ab), "cols"]
|
|
ab_result <- ab_result[!is.na(ab_result)][1L]
|
|
}
|
|
}
|
|
|
|
if (length(ab_result) == 0) {
|
|
if (verbose == TRUE) {
|
|
message(paste0("No column found as input for `", search_string,
|
|
"` (", ab_name(search_string, language = "en", tolower = TRUE), ")."))
|
|
}
|
|
return(NULL)
|
|
} else {
|
|
if (verbose == TRUE) {
|
|
message(blue(paste0("NOTE: Using column `", bold(ab_result), "` as input for `", search_string,
|
|
"` (", ab_name(search_string, language = "en", tolower = TRUE), ").")))
|
|
}
|
|
return(ab_result)
|
|
}
|
|
}
|
|
|
|
|
|
#' @importFrom crayon blue bold
|
|
#' @importFrom dplyr %>% mutate arrange pull
|
|
get_column_abx <- function(x,
|
|
soft_dependencies = NULL,
|
|
hard_dependencies = NULL,
|
|
verbose = FALSE,
|
|
...) {
|
|
|
|
message(blue("NOTE: Auto-guessing columns suitable for analysis..."), appendLF = FALSE)
|
|
|
|
x <- as.data.frame(x, stringsAsFactors = FALSE)
|
|
x_bak <- x
|
|
# only check columns that are a valid AB code, ATC code, name, abbreviation or synonym,
|
|
# or already have the rsi class (as.rsi)
|
|
# and that have no more than 50% invalid values
|
|
vectr_antibiotics <- unique(toupper(unlist(AMR::antibiotics[, c("ab", "atc", "name", "abbreviations", "synonyms")])))
|
|
vectr_antibiotics <- vectr_antibiotics[!is.na(vectr_antibiotics) & nchar(vectr_antibiotics) >= 3]
|
|
x_columns <- sapply(colnames(x), function(col, df = x_bak) {
|
|
if (toupper(col) %in% vectr_antibiotics |
|
|
is.rsi(as.data.frame(df)[, col]) |
|
|
is.rsi.eligible(as.data.frame(df)[, col], threshold = 0.5)) {
|
|
return(col)
|
|
} else {
|
|
return(NA_character_)
|
|
}
|
|
})
|
|
x_columns <- x_columns[!is.na(x_columns)]
|
|
x <- x[, x_columns, drop = FALSE] # without drop = TRUE, x will become a vector when x_columns is length 1
|
|
|
|
df_trans <- data.frame(colnames = colnames(x),
|
|
abcode = suppressWarnings(as.ab(colnames(x))))
|
|
df_trans <- df_trans[!is.na(df_trans$abcode), ]
|
|
x <- as.character(df_trans$colnames)
|
|
names(x) <- df_trans$abcode
|
|
|
|
# add from self-defined dots (...):
|
|
# such as get_column_abx(example_isolates %>% rename(thisone = AMX), amox = "thisone")
|
|
dots <- list(...)
|
|
if (length(dots) > 0) {
|
|
newnames <- suppressWarnings(as.ab(names(dots)))
|
|
if (any(is.na(newnames))) {
|
|
warning("Invalid antibiotic reference(s): ", toString(names(dots)[is.na(newnames)]),
|
|
call. = FALSE, immediate. = TRUE)
|
|
}
|
|
# turn all NULLs to NAs
|
|
dots <- unlist(lapply(dots, function(x) if (is.null(x)) NA else x))
|
|
names(dots) <- newnames
|
|
dots <- dots[!is.na(names(dots))]
|
|
# merge, but overwrite automatically determined ones by 'dots'
|
|
x <- c(x[!x %in% dots & !names(x) %in% names(dots)], dots)
|
|
# delete NAs, this will make e.g. eucast_rules(... TMP = NULL) work to prevent TMP from being used
|
|
x <- x[!is.na(x)]
|
|
}
|
|
|
|
# sort on name
|
|
x <- x[order(names(x), x)]
|
|
duplicates <- c(x[base::duplicated(x)], x[base::duplicated(names(x))])
|
|
duplicates <- duplicates[unique(names(duplicates))]
|
|
x <- c(x[!names(x) %in% names(duplicates)], duplicates)
|
|
x <- x[order(names(x), x)]
|
|
|
|
# succeeded with aut-guessing
|
|
message(blue("OK."))
|
|
|
|
for (i in seq_len(length(x))) {
|
|
if (verbose == TRUE & !names(x[i]) %in% names(duplicates)) {
|
|
message(blue(paste0("NOTE: Using column `", bold(x[i]), "` as input for `", names(x)[i],
|
|
"` (", ab_name(names(x)[i], tolower = TRUE), ").")))
|
|
}
|
|
if (names(x[i]) %in% names(duplicates)) {
|
|
warning(red(paste0("Using column `", bold(x[i]), "` as input for `", names(x)[i],
|
|
"` (", ab_name(names(x)[i], tolower = TRUE),
|
|
"), although it was matched for multiple antibiotics or columns.")),
|
|
call. = FALSE,
|
|
immediate. = verbose)
|
|
}
|
|
}
|
|
|
|
|
|
if (!is.null(hard_dependencies)) {
|
|
hard_dependencies <- unique(hard_dependencies)
|
|
if (!all(hard_dependencies %in% names(x))) {
|
|
# missing a hard dependency will return NA and consequently the data will not be analysed
|
|
missing <- hard_dependencies[!hard_dependencies %in% names(x)]
|
|
generate_warning_abs_missing(missing, any = FALSE)
|
|
return(NA)
|
|
}
|
|
}
|
|
if (!is.null(soft_dependencies)) {
|
|
soft_dependencies <- unique(soft_dependencies)
|
|
if (!all(soft_dependencies %in% names(x))) {
|
|
# missing a soft dependency may lower the reliability
|
|
missing <- soft_dependencies[!soft_dependencies %in% names(x)]
|
|
missing_txt <- data.frame(missing = missing,
|
|
missing_names = AMR::ab_name(missing, tolower = TRUE),
|
|
stringsAsFactors = FALSE) %>%
|
|
mutate(txt = paste0(bold(missing), " (", missing_names, ")")) %>%
|
|
arrange(missing_names) %>%
|
|
pull(txt)
|
|
message(blue("NOTE: Reliability will be improved if these antimicrobial results would be available too:",
|
|
paste(missing_txt, collapse = ", ")))
|
|
}
|
|
}
|
|
x
|
|
}
|
|
|
|
generate_warning_abs_missing <- function(missing, any = FALSE) {
|
|
missing <- paste0(missing, " (", ab_name(missing, tolower = TRUE), ")")
|
|
if (any == TRUE) {
|
|
any_txt <- c(" any of", "is")
|
|
} else {
|
|
any_txt <- c("", "are")
|
|
}
|
|
warning(paste0("Introducing NAs since", any_txt[1], " these antimicrobials ", any_txt[2], " required: ",
|
|
paste(missing, collapse = ", ")),
|
|
immediate. = TRUE,
|
|
call. = FALSE)
|
|
}
|