mirror of https://github.com/msberends/AMR.git
597 lines
22 KiB
R
597 lines
22 KiB
R
# ==================================================================== #
|
|
# TITLE #
|
|
# Antimicrobial Resistance (AMR) Analysis #
|
|
# #
|
|
# AUTHORS #
|
|
# Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
|
|
# #
|
|
# LICENCE #
|
|
# This program is free software; you can redistribute it and/or modify #
|
|
# it under the terms of the GNU General Public License version 2.0, #
|
|
# as published by the Free Software Foundation. #
|
|
# #
|
|
# This program is distributed in the hope that it will be useful, #
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
|
|
# GNU General Public License for more details. #
|
|
# ==================================================================== #
|
|
|
|
#' Determine first (weighted) isolates
|
|
#'
|
|
#' Determine first (weighted) isolates of all microorganisms of every patient per episode and (if needed) per specimen type.
|
|
#' @param tbl a \code{data.frame} containing isolates.
|
|
#' @param col_date column name of the result date (or date that is was received on the lab)
|
|
#' @param col_patient_id column name of the unique IDs of the patients
|
|
#' @param col_genus column name of the genus of the microorganisms
|
|
#' @param col_species column name of the species of the microorganisms
|
|
#' @param col_testcode column name of the test codes. Use \code{col_testcode = NA} to \strong{not} exclude certain test codes (like test codes for screening). In that case \code{testcodes_exclude} will be ignored.
|
|
#' @param col_specimen column name of the specimen type or group
|
|
#' @param col_icu column name of the logicals (\code{TRUE}/\code{FALSE}) whether a ward or department is an Intensive Care Unit (ICU)
|
|
#' @param col_keyantibiotics column name of the key antibiotics to determine first \emph{weighted} isolates, see \code{\link{key_antibiotics}}.
|
|
#' @param episode_days episode in days after which a genus/species combination will be determined as 'first isolate' again
|
|
#' @param testcodes_exclude character vector with test codes that should be excluded (caseINsensitive)
|
|
#' @param icu_exclude logical whether ICU isolates should be excluded
|
|
#' @param filter_specimen specimen group or type that should be excluded
|
|
#' @param output_logical return output as \code{logical} (will else the values \code{0} or \code{1})
|
|
#' @param points_threshold points until the comparison of key antibiotics will lead to inclusion of an isolate, see Details
|
|
#' @param info print progress
|
|
#' @details \strong{Why this is so important} \cr
|
|
#' To conduct an analysis of antimicrobial resistance, you should only include the first isolate of every patient per episode \href{https://www.ncbi.nlm.nih.gov/pubmed/17304462}{[1]}. If you would not do this, you could easily get an overestimate or underestimate of the resistance of an antibiotic. Imagine that a patient was admitted with an MRSA and that it was found in 5 different blood cultures the following week. The resistance percentage of oxacillin of all \emph{S. aureus} isolates would be overestimated, because you included this MRSA more than once. It would be \href{https://en.wikipedia.org/wiki/Selection_bias}{selection bias}.
|
|
#'
|
|
#' \strong{Using parameter \code{points_threshold}} \cr
|
|
#' To compare key antibiotics, the difference between antimicrobial interpretations will be measured. A difference from I to S|R (or vice versa) means 0.5 points. A difference from S to R (or vice versa) means 1 point. When the sum of points exceeds \code{points_threshold}, an isolate will be (re)selected as a first weighted isolate.
|
|
#' @keywords isolate isolates first
|
|
#' @export
|
|
#' @importFrom dplyr arrange_at lag between row_number filter mutate arrange
|
|
#' @return A vector to add to table, see Examples.
|
|
#' @examples
|
|
#' \dontrun{
|
|
#'
|
|
#' # set key antibiotics to a new variable
|
|
#' tbl$keyab <- key_antibiotics(tbl)
|
|
#'
|
|
#' tbl$first_isolate <-
|
|
#' first_isolate(tbl)
|
|
#'
|
|
#' tbl$first_isolate_weighed <-
|
|
#' first_isolate(tbl,
|
|
#' col_keyantibiotics = 'keyab')
|
|
#'
|
|
#' tbl$first_blood_isolate <-
|
|
#' first_isolate(tbl,
|
|
#' filter_specimen = 'Blood')
|
|
#'
|
|
#' tbl$first_blood_isolate_weighed <-
|
|
#' first_isolate(tbl,
|
|
#' filter_specimen = 'Blood',
|
|
#' col_keyantibiotics = 'keyab')
|
|
#'
|
|
#' tbl$first_urine_isolate <-
|
|
#' first_isolate(tbl,
|
|
#' filter_specimen = 'Urine')
|
|
#'
|
|
#' tbl$first_urine_isolate_weighed <-
|
|
#' first_isolate(tbl,
|
|
#' filter_specimen = 'Urine',
|
|
#' col_keyantibiotics = 'keyab')
|
|
#'
|
|
#' tbl$first_resp_isolate <-
|
|
#' first_isolate(tbl,
|
|
#' filter_specimen = 'Respiratory')
|
|
#'
|
|
#' tbl$first_resp_isolate_weighed <-
|
|
#' first_isolate(tbl,
|
|
#' filter_specimen = 'Respiratory',
|
|
#' col_keyantibiotics = 'keyab')
|
|
#' }
|
|
first_isolate <- function(tbl,
|
|
col_date,
|
|
col_patient_id,
|
|
col_genus,
|
|
col_species,
|
|
col_testcode = NA,
|
|
col_specimen,
|
|
col_icu,
|
|
col_keyantibiotics = NA,
|
|
episode_days = 365,
|
|
testcodes_exclude = '',
|
|
icu_exclude = FALSE,
|
|
filter_specimen = NA,
|
|
output_logical = TRUE,
|
|
points_threshold = 2,
|
|
info = TRUE) {
|
|
|
|
# controleren of kolommen wel bestaan
|
|
check_columns_existance <- function(column, tblname = tbl) {
|
|
if (NROW(tblname) <= 1 | NCOL(tblname) <= 1) {
|
|
stop('Please check tbl for existance.')
|
|
}
|
|
|
|
if (!is.na(column)) {
|
|
if (!(column %in% colnames(tblname))) {
|
|
stop('Column ', column, ' not found.')
|
|
}
|
|
}
|
|
}
|
|
|
|
check_columns_existance(col_date)
|
|
check_columns_existance(col_patient_id)
|
|
check_columns_existance(col_genus)
|
|
check_columns_existance(col_species)
|
|
check_columns_existance(col_testcode)
|
|
check_columns_existance(col_icu)
|
|
check_columns_existance(col_keyantibiotics)
|
|
|
|
if (is.na(col_testcode)) {
|
|
testcodes_exclude <- NA
|
|
}
|
|
# testcodes verwijderen die ingevuld zijn
|
|
if (!is.na(testcodes_exclude[1]) & testcodes_exclude[1] != '' & info == TRUE) {
|
|
cat('Isolates from these test codes will be ignored:\n', toString(testcodes_exclude), '\n')
|
|
}
|
|
|
|
if (is.na(col_icu)) {
|
|
icu_exclude <- FALSE
|
|
} else {
|
|
tbl <- tbl %>%
|
|
mutate(col_icu = tbl %>% pull(col_icu) %>% as.logical())
|
|
}
|
|
|
|
specgroup.notice <- ''
|
|
weighted.notice <- ''
|
|
# filteren op materiaalgroep en sleutelantibiotica gebruiken wanneer deze ingevuld zijn
|
|
if (!is.na(filter_specimen) & filter_specimen != '') {
|
|
check_columns_existance(col_specimen, tbl)
|
|
if (info == TRUE) {
|
|
cat('Isolates other than of specimen group \'', filter_specimen, '\' will be ignored. ', sep = '')
|
|
}
|
|
} else {
|
|
filter_specimen <- ''
|
|
}
|
|
if (col_keyantibiotics %in% c(NA, '')) {
|
|
col_keyantibiotics <- ''
|
|
} else {
|
|
tbl <- tbl %>% mutate(key_ab = tbl %>% pull(col_keyantibiotics))
|
|
}
|
|
|
|
if (is.na(testcodes_exclude[1])) {
|
|
testcodes_exclude <- ''
|
|
}
|
|
|
|
# nieuwe dataframe maken met de oorspronkelijke rij-index, 0-bepaling en juiste sortering
|
|
#cat('Sorting table...')
|
|
tbl <- tbl %>%
|
|
mutate(first_isolate_row_index = 1:nrow(tbl),
|
|
eersteisolaatbepaling = 0,
|
|
date_lab = tbl %>% pull(col_date),
|
|
patient_id = tbl %>% pull(col_patient_id),
|
|
species = tbl %>% pull(col_species),
|
|
genus = tbl %>% pull(col_genus)) %>%
|
|
mutate(species = if_else(is.na(species), '', species),
|
|
genus = if_else(is.na(genus), '', genus))
|
|
|
|
if (filter_specimen == '') {
|
|
|
|
if (icu_exclude == FALSE) {
|
|
if (info == TRUE) {
|
|
cat('Isolates from ICU will *NOT* be ignored.\n')
|
|
}
|
|
tbl <- tbl %>%
|
|
arrange_at(c(col_patient_id,
|
|
col_genus,
|
|
col_species,
|
|
col_date))
|
|
row.start <- 1
|
|
row.end <- nrow(tbl)
|
|
} else {
|
|
if (info == TRUE) {
|
|
cat('Isolates from ICU will be ignored.\n')
|
|
}
|
|
tbl <- tbl %>%
|
|
arrange_at(c(col_icu,
|
|
col_patient_id,
|
|
col_genus,
|
|
col_species,
|
|
col_date))
|
|
|
|
suppressWarnings(
|
|
row.start <- which(tbl %>% pull(col_icu) == FALSE) %>% min(na.rm = TRUE)
|
|
)
|
|
suppressWarnings(
|
|
row.end <- which(tbl %>% pull(col_icu) == FALSE) %>% max(na.rm = TRUE)
|
|
)
|
|
}
|
|
|
|
} else {
|
|
# sorteren op materiaal en alleen die rijen analyseren om tijd te besparen
|
|
if (icu_exclude == FALSE) {
|
|
if (info == TRUE) {
|
|
cat('Isolates from ICU will *NOT* be ignored.\n')
|
|
}
|
|
tbl <- tbl %>%
|
|
arrange_at(c(col_specimen,
|
|
col_patient_id,
|
|
col_genus,
|
|
col_species,
|
|
col_date))
|
|
suppressWarnings(
|
|
row.start <- which(tbl %>% pull(col_specimen) == filter_specimen) %>% min(na.rm = TRUE)
|
|
)
|
|
suppressWarnings(
|
|
row.end <- which(tbl %>% pull(col_specimen) == filter_specimen) %>% max(na.rm = TRUE)
|
|
)
|
|
} else {
|
|
if (info == TRUE) {
|
|
cat('Isolates from ICU will be ignored.\n')
|
|
}
|
|
tbl <- tbl %>%
|
|
arrange_at(c(col_icu,
|
|
col_specimen,
|
|
col_patient_id,
|
|
col_genus,
|
|
col_species,
|
|
col_date))
|
|
suppressWarnings(
|
|
row.start <- which(tbl %>% pull(col_specimen) == filter_specimen
|
|
& tbl %>% pull(col_icu) == FALSE) %>% min(na.rm = TRUE)
|
|
)
|
|
suppressWarnings(
|
|
row.end <- which(tbl %>% pull(col_specimen) == filter_specimen
|
|
& tbl %>% pull(col_icu) == FALSE) %>% max(na.rm = TRUE)
|
|
)
|
|
}
|
|
|
|
}
|
|
|
|
if (abs(row.start) == Inf | abs(row.end) == Inf) {
|
|
if (info == TRUE) {
|
|
cat('No isolates found.\n')
|
|
}
|
|
# NA's maken waar genus niet beschikbaar is
|
|
tbl <- tbl %>%
|
|
mutate(real_first_isolate = if_else(genus == '', NA, FALSE))
|
|
if (output_logical == FALSE) {
|
|
tbl$real_first_isolate <- tbl %>% pull(real_first_isolate) %>% as.integer()
|
|
}
|
|
return(tbl %>% pull(real_first_isolate))
|
|
}
|
|
|
|
scope.size <- tbl %>%
|
|
filter(row_number() %>%
|
|
between(row.start,
|
|
row.end),
|
|
genus != '') %>%
|
|
nrow()
|
|
|
|
# Analyse van eerste isolaat ----
|
|
all_first <- tbl %>%
|
|
mutate(other_pat_or_mo = if_else(patient_id == lag(patient_id)
|
|
& genus == lag(genus)
|
|
& species == lag(species),
|
|
FALSE,
|
|
TRUE),
|
|
days_diff = 0) %>%
|
|
mutate(days_diff = if_else(other_pat_or_mo == FALSE,
|
|
(date_lab - lag(date_lab)) + lag(days_diff),
|
|
0))
|
|
|
|
if (col_keyantibiotics != '') {
|
|
if (info == TRUE) {
|
|
cat(paste0('Comparing key antibiotics for first weighted isolates (using points threshold of '
|
|
, points_threshold, ')...\n'))
|
|
}
|
|
all_first <- all_first %>%
|
|
mutate(key_ab_lag = lag(key_ab)) %>%
|
|
mutate(key_ab_other = !key_antibiotics_equal(x = key_ab,
|
|
y = key_ab_lag,
|
|
points_threshold = points_threshold,
|
|
info = info)) %>%
|
|
mutate(
|
|
real_first_isolate =
|
|
if_else(
|
|
between(row_number(), row.start, row.end)
|
|
& genus != ''
|
|
& (other_pat_or_mo
|
|
| days_diff >= episode_days
|
|
| key_ab_other),
|
|
TRUE,
|
|
FALSE))
|
|
if (info == TRUE) {
|
|
cat('\n')
|
|
}
|
|
} else {
|
|
all_first <- all_first %>%
|
|
mutate(
|
|
real_first_isolate =
|
|
if_else(
|
|
between(row_number(), row.start, row.end)
|
|
& genus != ''
|
|
& (other_pat_or_mo
|
|
| days_diff >= episode_days),
|
|
TRUE,
|
|
FALSE))
|
|
}
|
|
|
|
# allereerst isolaat als TRUE
|
|
all_first[row.start, 'real_first_isolate'] <- TRUE
|
|
# geen testen die uitgesloten moeten worden, of ICU
|
|
if (!is.na(col_testcode)) {
|
|
all_first[which(all_first[, col_testcode] %in% tolower(testcodes_exclude)), 'real_first_isolate'] <- FALSE
|
|
}
|
|
if (icu_exclude == TRUE) {
|
|
all_first[which(all_first[, col_icu] == TRUE), 'real_first_isolate'] <- FALSE
|
|
}
|
|
|
|
# NA's maken waar genus niet beschikbaar is
|
|
all_first <- all_first %>%
|
|
mutate(real_first_isolate = if_else(genus == '', NA, real_first_isolate))
|
|
|
|
all_first <- all_first %>%
|
|
arrange(first_isolate_row_index) %>%
|
|
pull(real_first_isolate)
|
|
|
|
if (info == TRUE) {
|
|
cat(paste0('\nFound ',
|
|
all_first %>% sum(na.rm = TRUE),
|
|
' first ', weighted.notice, 'isolates (',
|
|
(all_first %>% sum(na.rm = TRUE) / scope.size) %>% percent(),
|
|
' of isolates in scope [where genus was not empty] and ',
|
|
(all_first %>% sum(na.rm = TRUE) / tbl %>% nrow()) %>% percent(),
|
|
' of total)\n'))
|
|
}
|
|
|
|
if (output_logical == FALSE) {
|
|
all_first <- all_first %>% as.integer()
|
|
}
|
|
|
|
all_first
|
|
|
|
}
|
|
|
|
#' Key antibiotics based on bacteria ID
|
|
#'
|
|
#' @param tbl table with antibiotics coloms, like \code{amox} and \code{amcl}.
|
|
#' @param col_bactcode column of bacteria IDs in \code{tbl}; these should occur in \code{bactlist$bactid}, see \code{\link{bactlist}}
|
|
#' @param info print warnings
|
|
#' @param amcl,amox,cfot,cfta,cftr,cfur,cipr,clar,clin,clox,doxy,gent,line,mero,peni,pita,rifa,teic,trsu,vanc column names of antibiotics.
|
|
#' @export
|
|
#' @importFrom dplyr %>% mutate if_else
|
|
#' @return Character of length 1.
|
|
#' @seealso \code{\link{mo_property}} \code{\link{antibiotics}}
|
|
#' @examples
|
|
#' \donttest{
|
|
#' #' # set key antibiotics to a new variable
|
|
#' tbl$keyab <- key_antibiotics(tbl)
|
|
#' }
|
|
key_antibiotics <- function(tbl,
|
|
col_bactcode = 'bactid',
|
|
info = TRUE,
|
|
amcl = 'amcl',
|
|
amox = 'amox',
|
|
cfot = 'cfot',
|
|
cfta = 'cfta',
|
|
cftr = 'cftr',
|
|
cfur = 'cfur',
|
|
cipr = 'cipr',
|
|
clar = 'clar',
|
|
clin = 'clin',
|
|
clox = 'clox',
|
|
doxy = 'doxy',
|
|
gent = 'gent',
|
|
line = 'line',
|
|
mero = 'mero',
|
|
peni = 'peni',
|
|
pita = 'pita',
|
|
rifa = 'rifa',
|
|
teic = 'teic',
|
|
trsu = 'trsu',
|
|
vanc = 'vanc') {
|
|
|
|
keylist <- character(length = nrow(tbl))
|
|
|
|
# check columns
|
|
col.list <- c(amox, cfot, cfta, cftr, cfur, cipr, clar,
|
|
clin, clox, doxy, gent, line, mero, peni,
|
|
pita, rifa, teic, trsu, vanc)
|
|
col.list <- col.list[!is.na(col.list)]
|
|
if (!all(col.list %in% colnames(tbl))) {
|
|
if (info == TRUE) {
|
|
warning('These columns do not exist and will be ignored:\n',
|
|
col.list[!(col.list %in% colnames(tbl))] %>% toString(),
|
|
immediate. = TRUE,
|
|
call. = FALSE)
|
|
}
|
|
}
|
|
|
|
# join bactlist
|
|
tbl <- tbl %>% left_join_bactlist(col_bactcode)
|
|
|
|
tbl$key_ab <- NA_character_
|
|
|
|
# Staphylococcus
|
|
list_ab <- c(clox, trsu, teic, vanc, doxy, line, clar, rifa)
|
|
list_ab <- list_ab[list_ab %in% colnames(tbl)]
|
|
tbl <- tbl %>% mutate(key_ab =
|
|
if_else(genus == 'Staphylococcus',
|
|
apply(X = tbl[, list_ab],
|
|
MARGIN = 1,
|
|
FUN = function(x) paste(x, collapse = "")),
|
|
key_ab))
|
|
|
|
# Rest of Gram +
|
|
list_ab <- c(peni, amox, teic, vanc, clin, line, clar, trsu)
|
|
list_ab <- list_ab[list_ab %in% colnames(tbl)]
|
|
tbl <- tbl %>% mutate(key_ab =
|
|
if_else(gramstain %like% '^Positive ',
|
|
apply(X = tbl[, list_ab],
|
|
MARGIN = 1,
|
|
FUN = function(x) paste(x, collapse = "")),
|
|
key_ab))
|
|
|
|
# Gram -
|
|
list_ab <- c(amox, amcl, pita, cfur, cfot, cfta, cftr, mero, cipr, trsu, gent)
|
|
list_ab <- list_ab[list_ab %in% colnames(tbl)]
|
|
tbl <- tbl %>% mutate(key_ab =
|
|
if_else(gramstain %like% '^Negative ',
|
|
apply(X = tbl[, list_ab],
|
|
MARGIN = 1,
|
|
FUN = function(x) paste(x, collapse = "")),
|
|
key_ab))
|
|
|
|
# format
|
|
tbl <- tbl %>%
|
|
mutate(key_ab = gsub('(NA|NULL)', '-', key_ab) %>% toupper())
|
|
|
|
tbl$key_ab
|
|
|
|
}
|
|
|
|
#' @importFrom dplyr progress_estimated %>%
|
|
#' @noRd
|
|
key_antibiotics_equal <- function(x, y, points_threshold = 2, info = FALSE) {
|
|
# x is active row, y is lag
|
|
|
|
if (length(x) != length(y)) {
|
|
stop('Length of `x` and `y` must be equal.')
|
|
}
|
|
|
|
result <- logical(length(x))
|
|
|
|
if (info == TRUE) {
|
|
p <- dplyr::progress_estimated(length(x))
|
|
}
|
|
|
|
for (i in 1:length(x)) {
|
|
|
|
if (info == TRUE) {
|
|
p$tick()$print()
|
|
}
|
|
|
|
if (is.na(x[i])) {
|
|
x[i] <- ''
|
|
}
|
|
if (is.na(y[i])) {
|
|
y[i] <- ''
|
|
}
|
|
|
|
if (nchar(x[i]) != nchar(y[i])) {
|
|
|
|
result[i] <- FALSE
|
|
|
|
} else if (x[i] == '' & y[i] == '') {
|
|
|
|
result[i] <- TRUE
|
|
|
|
} else {
|
|
|
|
# count points for every single character:
|
|
# - no change is 0 points
|
|
# - I <-> S|R is 0.5 point
|
|
# - S|R <-> R|S is 1 point
|
|
# use the levels of as.rsi (S = 1, I = 2, R = 3)
|
|
|
|
x2 <- strsplit(x[i], "")[[1]] %>% as.rsi() %>% as.double()
|
|
y2 <- strsplit(y[i], "")[[1]] %>% as.rsi() %>% as.double()
|
|
|
|
points <- (x2 - y2) %>% abs() %>% sum(na.rm = TRUE)
|
|
result[i] <- ((points / 2) >= points_threshold)
|
|
}
|
|
}
|
|
if (info == TRUE) {
|
|
cat('\n')
|
|
}
|
|
result
|
|
}
|
|
|
|
#' Find bacteria ID based on genus/species
|
|
#'
|
|
#' Use this function to determine a valid ID based on a genus (and species). This input could be a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), or just a genus. You could also use a \code{\link{paste}} of a genus and species column to use the full name as input: \code{x = paste(df$genus, df$species)}, where \code{df} is your dataframe.
|
|
#' @param x character vector to determine \code{bactid}
|
|
#' @export
|
|
#' @importFrom dplyr %>% filter slice pull
|
|
#' @return Character (vector).
|
|
#' @seealso \code{\link{bactlist}} for the dataframe that is being used to determine ID's.
|
|
#' @examples
|
|
#' # These examples all return "STAAUR", the ID of S. aureus:
|
|
#' guess_bactid("stau")
|
|
#' guess_bactid("STAU")
|
|
#' guess_bactid("staaur")
|
|
#' guess_bactid("S. aureus")
|
|
#' guess_bactid("S aureus")
|
|
#' guess_bactid("Staphylococcus aureus")
|
|
#' guess_bactid("MRSA") # Methicillin-resistant S. aureus
|
|
#' guess_bactid("VISA") # Vancomycin Intermediate S. aureus
|
|
guess_bactid <- function(x) {
|
|
# remove dots and other non-text in case of "E. coli" except spaces
|
|
x <- gsub("[^a-zA-Z ]+", "", x)
|
|
x.bak <- x
|
|
# replace space by regex sign
|
|
x <- gsub(" ", ".*", x, fixed = TRUE)
|
|
# add start and stop
|
|
x_species <- paste(x, 'species')
|
|
x <- paste0('^', x, '$')
|
|
|
|
for (i in 1:length(x)) {
|
|
if (tolower(x[i]) == '^e.*coli$') {
|
|
# avoid detection of Entamoeba coli in case of Escherichia coli
|
|
x[i] <- 'Escherichia coli'
|
|
}
|
|
if (tolower(x[i]) == '^st.*au$'
|
|
| tolower(x[i]) == '^stau$'
|
|
| tolower(x[i]) == '^staaur$') {
|
|
# avoid detection of Staphylococcus auricularis in case of S. aureus
|
|
x[i] <- 'Staphylococcus aureus'
|
|
}
|
|
if (tolower(x[i]) == '^p.*aer$') {
|
|
# avoid detection of Pasteurella aerogenes in case of Pseudomonas aeruginosa
|
|
x[i] <- 'Pseudomonas aeruginosa'
|
|
}
|
|
# translate known trivial names to genus+species
|
|
if (toupper(x.bak[i]) == 'MRSA'
|
|
| toupper(x.bak[i]) == 'VISA'
|
|
| toupper(x.bak[i]) == 'VRSA') {
|
|
x[i] <- 'Staphylococcus aureus'
|
|
}
|
|
if (toupper(x.bak[i]) == 'MRSE') {
|
|
x[i] <- 'Staphylococcus epidermidis'
|
|
}
|
|
if (toupper(x.bak[i]) == 'VRE') {
|
|
x[i] <- 'Enterococcus'
|
|
}
|
|
|
|
# let's try the ID's first
|
|
found <- AMR::bactlist %>% filter(bactid == x.bak[i])
|
|
|
|
if (nrow(found) == 0) {
|
|
# now try exact match
|
|
found <- AMR::bactlist %>% filter(fullname == x[i])
|
|
}
|
|
if (nrow(found) == 0) {
|
|
# try any match
|
|
found <- AMR::bactlist %>% filter(fullname %like% x[i])
|
|
}
|
|
if (nrow(found) == 0) {
|
|
# try only genus, with 'species' attached
|
|
found <- AMR::bactlist %>% filter(fullname %like% x_species[i])
|
|
}
|
|
if (nrow(found) == 0) {
|
|
# try splitting of characters and then find ID
|
|
# like esco = E. coli, klpn = K. pneumoniae, stau = S. aureus
|
|
x_length <- nchar(x.bak[i])
|
|
x[i] <- paste0(x.bak[i] %>% substr(1, x_length / 2) %>% trimws(),
|
|
'.* ',
|
|
x.bak[i] %>% substr((x_length / 2) + 1, x_length) %>% trimws())
|
|
found <- AMR::bactlist %>% filter(fullname %like% paste0('^', x[i]))
|
|
}
|
|
|
|
if (nrow(found) != 0) {
|
|
x[i] <- found %>%
|
|
slice(1) %>%
|
|
pull(bactid)
|
|
} else {
|
|
x[i] <- ""
|
|
}
|
|
}
|
|
x
|
|
}
|