1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-13 12:51:38 +01:00
AMR/man/mo_matching_score.Rd

59 lines
6.3 KiB
R

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mo_matching_score.R
\name{mo_matching_score}
\alias{mo_matching_score}
\title{Calculate the Matching Score for Microorganisms}
\usage{
mo_matching_score(x, n)
}
\arguments{
\item{x}{Any user input value(s)}
\item{n}{A full taxonomic name, that exists in \code{\link[=microorganisms]{microorganisms$fullname}}}
}
\description{
This algorithm is used by \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions to determine the most probable match of taxonomic records based on user input.
}
\section{Matching Score for Microorganisms}{
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m}, is calculated as:
\ifelse{latex}{\deqn{m_{(x, n)} = \frac{l_{n} - 0.5 \cdot \min \begin{cases}l_{n} \\ \textrm{lev}(x, n)\end{cases}}{l_{n} \cdot p_{n} \cdot k_{n}}}}{\ifelse{html}{\figure{mo_matching_score.png}{options: width="300" alt="mo matching score"}}{m(x, n) = ( l_n * min(l_n, lev(x, n) ) ) / ( l_n * p_n * k_n )}}
where:
\itemize{
\item \ifelse{html}{\out{<i>x</i> is the user input;}}{\eqn{x} is the user input;}
\item \ifelse{html}{\out{<i>n</i> is a taxonomic name (genus, species, and subspecies);}}{\eqn{n} is a taxonomic name (genus, species, and subspecies);}
\item \ifelse{html}{\out{<i>l<sub>n</sub></i> is the length of <i>n</i>;}}{l_n is the length of \eqn{n};}
\item \ifelse{html}{\out{<i>lev</i> is the <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein distance function</a>, which counts any insertion, deletion and substitution as 1 that is needed to change <i>x</i> into <i>n</i>;}}{lev is the Levenshtein distance function, which counts any insertion, deletion and substitution as 1 that is needed to change \eqn{x} into \eqn{n};}
\item \ifelse{html}{\out{<i>p<sub>n</sub></i> is the human pathogenic prevalence group of <i>n</i>, as described below;}}{p_n is the human pathogenic prevalence group of \eqn{n}, as described below;}
\item \ifelse{html}{\out{<i>k<sub>n</sub></i> is the taxonomic kingdom of <i>n</i>, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}}{l_n is the taxonomic kingdom of \eqn{n}, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}
}
The grouping into human pathogenic prevalence (\eqn{p}) is based on experience from several microbiological laboratories in the Netherlands in conjunction with international reports on pathogen prevalence. \strong{Group 1} (most prevalent microorganisms) consists of all microorganisms where the taxonomic class is Gammaproteobacteria or where the taxonomic genus is \emph{Enterococcus}, \emph{Staphylococcus} or \emph{Streptococcus}. This group consequently contains all common Gram-negative bacteria, such as \emph{Pseudomonas} and \emph{Legionella} and all species within the order Enterobacterales. \strong{Group 2} consists of all microorganisms where the taxonomic phylum is Proteobacteria, Firmicutes, Actinobacteria or Sarcomastigophora, or where the taxonomic genus is \emph{Absidia}, \emph{Acremonium}, \emph{Actinotignum}, \emph{Alternaria}, \emph{Anaerosalibacter}, \emph{Apophysomyces}, \emph{Arachnia}, \emph{Aspergillus}, \emph{Aureobacterium}, \emph{Aureobasidium}, \emph{Bacteroides}, \emph{Basidiobolus}, \emph{Beauveria}, \emph{Blastocystis}, \emph{Branhamella}, \emph{Calymmatobacterium}, \emph{Candida}, \emph{Capnocytophaga}, \emph{Catabacter}, \emph{Chaetomium}, \emph{Chryseobacterium}, \emph{Chryseomonas}, \emph{Chrysonilia}, \emph{Cladophialophora}, \emph{Cladosporium}, \emph{Conidiobolus}, \emph{Cryptococcus}, \emph{Curvularia}, \emph{Exophiala}, \emph{Exserohilum}, \emph{Flavobacterium}, \emph{Fonsecaea}, \emph{Fusarium}, \emph{Fusobacterium}, \emph{Hendersonula}, \emph{Hypomyces}, \emph{Koserella}, \emph{Lelliottia}, \emph{Leptosphaeria}, \emph{Leptotrichia}, \emph{Malassezia}, \emph{Malbranchea}, \emph{Mortierella}, \emph{Mucor}, \emph{Mycocentrospora}, \emph{Mycoplasma}, \emph{Nectria}, \emph{Ochroconis}, \emph{Oidiodendron}, \emph{Phoma}, \emph{Piedraia}, \emph{Pithomyces}, \emph{Pityrosporum}, \emph{Prevotella}, \emph{Pseudallescheria}, \emph{Rhizomucor}, \emph{Rhizopus}, \emph{Rhodotorula}, \emph{Scolecobasidium}, \emph{Scopulariopsis}, \emph{Scytalidium}, \emph{Sporobolomyces}, \emph{Stachybotrys}, \emph{Stomatococcus}, \emph{Treponema}, \emph{Trichoderma}, \emph{Trichophyton}, \emph{Trichosporon}, \emph{Tritirachium} or \emph{Ureaplasma}. \strong{Group 3} consists of all other microorganisms.
All characters in \eqn{x} and \eqn{n} are ignored that are other than A-Z, a-z, 0-9, spaces and parentheses.
All matches are sorted descending on their matching score and for all user input values, the top match will be returned. This will lead to the effect that e.g., \code{"E. coli"} will return the microbial ID of \emph{Escherichia coli} (\eqn{m = 0.688}, a highly prevalent microorganism found in humans) and not \emph{Entamoeba coli} (\eqn{m = 0.079}, a less prevalent microorganism in humans), although the latter would alphabetically come first.
Since \code{AMR} version 1.8.1, common microorganism abbreviations are ignored in determining the matching score. These abbreviations are currently: AIEC, ATEC, BORSA, CRSM, DAEC, EAEC, EHEC, EIEC, EPEC, ETEC, GISA, MRPA, MRSA, MRSE, MSSA, MSSE, NMEC, PISP, PRSP, STEC, UPEC, VISA, VISP, VRE, VRSA and VRSP.
}
\section{Reference Data Publicly Available}{
All data sets in this \code{AMR} package (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.) are publicly and freely available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, and Stata. We also provide tab-separated plain text files that are machine-readable and suitable for input in any software program, such as laboratory information systems. Please visit \href{https://msberends.github.io/AMR/articles/datasets.html}{our website for the download links}. The actual files are of course available on \href{https://github.com/msberends/AMR/tree/main/data-raw}{our GitHub repository}.
}
\examples{
as.mo("E. coli")
mo_uncertainties()
mo_matching_score(
x = "E. coli",
n = c("Escherichia coli", "Entamoeba coli")
)
}
\author{
Dr Matthijs Berends
}