mirror of https://github.com/msberends/AMR.git
141 lines
6.4 KiB
R
141 lines
6.4 KiB
R
# ==================================================================== #
|
|
# TITLE #
|
|
# Antimicrobial Resistance (AMR) Data Analysis for R #
|
|
# #
|
|
# SOURCE #
|
|
# https://github.com/msberends/AMR #
|
|
# #
|
|
# LICENCE #
|
|
# (c) 2018-2021 Berends MS, Luz CF et al. #
|
|
# Developed at the University of Groningen, the Netherlands, in #
|
|
# collaboration with non-profit organisations Certe Medical #
|
|
# Diagnostics & Advice, and University Medical Center Groningen. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# #
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
|
# ==================================================================== #
|
|
|
|
#' Random MIC Values/Disk Zones/RSI Generation
|
|
#'
|
|
#' These functions can be used for generating random MIC values and disk diffusion diameters, for AMR data analysis practice. By providing a microorganism and antimicrobial agent, the generated results will reflect reality as much as possible.
|
|
#' @inheritSection lifecycle Stable Lifecycle
|
|
#' @param size desired size of the returned vector
|
|
#' @param mo any character that can be coerced to a valid microorganism code with [as.mo()]
|
|
#' @param ab any character that can be coerced to a valid antimicrobial agent code with [as.ab()]
|
|
#' @param prob_RSI a vector of length 3: the probabilities for R (1st value), S (2nd value) and I (3rd value)
|
|
#' @param ... ignored, only in place to allow future extensions
|
|
#' @details The base R function [sample()] is used for generating values.
|
|
#'
|
|
#' Generated values are based on the latest EUCAST guideline implemented in the [rsi_translation] data set. To create specific generated values per bug or drug, set the `mo` and/or `ab` argument.
|
|
#' @return class `<mic>` for [random_mic()] (see [as.mic()]) and class `<disk>` for [random_disk()] (see [as.disk()])
|
|
#' @name random
|
|
#' @rdname random
|
|
#' @export
|
|
#' @inheritSection AMR Read more on Our Website!
|
|
#' @examples
|
|
#' random_mic(100)
|
|
#' random_disk(100)
|
|
#' random_rsi(100)
|
|
#'
|
|
#' \donttest{
|
|
#' # make the random generation more realistic by setting a bug and/or drug:
|
|
#' random_mic(100, "Klebsiella pneumoniae") # range 0.0625-64
|
|
#' random_mic(100, "Klebsiella pneumoniae", "meropenem") # range 0.0625-16
|
|
#' random_mic(100, "Streptococcus pneumoniae", "meropenem") # range 0.0625-4
|
|
#'
|
|
#' random_disk(100, "Klebsiella pneumoniae") # range 8-50
|
|
#' random_disk(100, "Klebsiella pneumoniae", "ampicillin") # range 11-17
|
|
#' random_disk(100, "Streptococcus pneumoniae", "ampicillin") # range 12-27
|
|
#' }
|
|
random_mic <- function(size, mo = NULL, ab = NULL, ...) {
|
|
random_exec("MIC", size = size, mo = mo, ab = ab)
|
|
}
|
|
|
|
#' @rdname random
|
|
#' @export
|
|
random_disk <- function(size, mo = NULL, ab = NULL, ...) {
|
|
random_exec("DISK", size = size, mo = mo, ab = ab)
|
|
}
|
|
|
|
#' @rdname random
|
|
#' @export
|
|
random_rsi <- function(size, prob_RSI = c(0.33, 0.33, 0.33), ...) {
|
|
sample(as.rsi(c("R", "S", "I")), size = size, replace = TRUE, prob = prob_RSI)
|
|
}
|
|
|
|
random_exec <- function(type, size, mo = NULL, ab = NULL) {
|
|
df <- rsi_translation %pm>%
|
|
pm_filter(guideline %like% "EUCAST") %pm>%
|
|
pm_arrange(pm_desc(guideline)) %pm>%
|
|
subset(guideline == max(guideline) &
|
|
method == type)
|
|
|
|
if (!is.null(mo)) {
|
|
mo_coerced <- as.mo(mo)
|
|
mo_include <- c(mo_coerced,
|
|
as.mo(mo_genus(mo_coerced)),
|
|
as.mo(mo_family(mo_coerced)),
|
|
as.mo(mo_order(mo_coerced)))
|
|
df_new <- df %pm>%
|
|
subset(mo %in% mo_include)
|
|
if (nrow(df_new) > 0) {
|
|
df <- df_new
|
|
} else {
|
|
warning_("No rows found that match mo '", mo, "', ignoring argument `mo`", call = FALSE)
|
|
}
|
|
}
|
|
|
|
if (!is.null(ab)) {
|
|
ab_coerced <- as.ab(ab)
|
|
df_new <- df %pm>%
|
|
subset(ab %in% ab_coerced)
|
|
if (nrow(df_new) > 0) {
|
|
df <- df_new
|
|
} else {
|
|
warning_("No rows found that match ab '", ab, "', ignoring argument `ab`", call = FALSE)
|
|
}
|
|
}
|
|
|
|
if (type == "MIC") {
|
|
# all valid MIC levels
|
|
valid_range <- as.mic(levels(as.mic(1)))
|
|
set_range_max <- max(df$breakpoint_R)
|
|
if (log(set_range_max, 2) %% 1 == 0) {
|
|
# return powers of 2
|
|
valid_range <- unique(as.double(valid_range))
|
|
# add 1-3 higher MIC levels to set_range_max
|
|
set_range_max <- 2 ^ (log(set_range_max, 2) + sample(c(1:3), 1))
|
|
set_range <- as.mic(valid_range[log(valid_range, 2) %% 1 == 0 & valid_range <= set_range_max])
|
|
} else {
|
|
# no power of 2, return factors of 2 to left and right side
|
|
valid_mics <- suppressWarnings(as.mic(set_range_max / (2 ^ c(-3:3))))
|
|
set_range <- valid_mics[!is.na(valid_mics)]
|
|
}
|
|
out <- as.mic(sample(set_range, size = size, replace = TRUE))
|
|
# 50% chance that lowest will get <= and highest will get >=
|
|
if (stats::runif(1) > 0.5) {
|
|
out[out == min(out)] <- paste0("<=", out[out == min(out)])
|
|
}
|
|
if (stats::runif(1) > 0.5) {
|
|
out[out == max(out)] <- paste0(">=", out[out == max(out)])
|
|
}
|
|
return(out)
|
|
} else if (type == "DISK") {
|
|
set_range <- seq(from = as.integer(min(df$breakpoint_R) / 1.25),
|
|
to = as.integer(max(df$breakpoint_S) * 1.25),
|
|
by = 1)
|
|
out <- sample(set_range, size = size, replace = TRUE)
|
|
out[out < 6] <- sample(c(6:10), length(out[out < 6]), replace = TRUE)
|
|
out[out > 50] <- sample(c(40:50), length(out[out > 50]), replace = TRUE)
|
|
return(as.disk(out))
|
|
}
|
|
}
|