1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-25 02:24:34 +01:00
AMR/inst/tinytest/test-ab_class_selectors.R

71 lines
4.9 KiB
R

# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Data Analysis for R #
# #
# SOURCE #
# https://github.com/msberends/AMR #
# #
# LICENCE #
# (c) 2018-2021 Berends MS, Luz CF et al. #
# Developed at the University of Groningen, the Netherlands, in #
# collaboration with non-profit organisations Certe Medical #
# Diagnostics & Advice, and University Medical Center Groningen. #
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
# #
# Visit our website for the full manual and a complete tutorial about #
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
# ==================================================================== #
# antibiotic class selectors
expect_true(ncol(example_isolates[, ab_class("antimyco"), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, aminoglycosides(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, aminopenicillins(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, betalactams(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, carbapenems(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, cephalosporins(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, cephalosporins_1st(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, cephalosporins_2nd(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, cephalosporins_3rd(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, cephalosporins_4th(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, cephalosporins_5th(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, fluoroquinolones(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, glycopeptides(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, lincosamides(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, lipoglycopeptides(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, macrolides(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, oxazolidinones(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, penicillins(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, polymyxins(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, streptogramins(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, quinolones(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, tetracyclines(), drop = FALSE]) < ncol(example_isolates))
expect_true(ncol(example_isolates[, ureidopenicillins(), drop = FALSE]) < ncol(example_isolates))
# Examples:
# select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB'
expect_equal(ncol(example_isolates[, c("mo", aminoglycosides())]), 5, tolerance = 0.5)
# filter using any() or all()
expect_equal(nrow(example_isolates[any(carbapenems() == "R"), ]), 55, tolerance = 0.5)
expect_equal(nrow(subset(example_isolates, any(carbapenems() == "R"))), 55, tolerance = 0.5)
# filter on any or all results in the carbapenem columns (i.e., IPM, MEM):
expect_equal(nrow(example_isolates[any(carbapenems()), ]), 962, tolerance = 0.5)
expect_equal(nrow(example_isolates[all(carbapenems()), ]), 756, tolerance = 0.5)
# filter with multiple antibiotic selectors using c()
expect_equal(nrow(example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"), ]), 26, tolerance = 0.5)
# filter + select in one go: get penicillins in carbapenems-resistant strains
expect_equal(nrow(example_isolates[any(carbapenems() == "R"), penicillins()]), 55, tolerance = 0.5)
expect_equal(ncol(example_isolates[any(carbapenems() == "R"), penicillins()]), 7, tolerance = 0.5)