mirror of https://github.com/msberends/AMR.git
200 lines
7.3 KiB
R
200 lines
7.3 KiB
R
# ==================================================================== #
|
|
# TITLE #
|
|
# Antimicrobial Resistance (AMR) Analysis #
|
|
# #
|
|
# AUTHORS #
|
|
# Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
|
|
# #
|
|
# LICENCE #
|
|
# This program is free software; you can redistribute it and/or modify #
|
|
# it under the terms of the GNU General Public License version 2.0, #
|
|
# as published by the Free Software Foundation. #
|
|
# #
|
|
# This program is distributed in the hope that it will be useful, #
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
|
|
# GNU General Public License for more details. #
|
|
# ==================================================================== #
|
|
|
|
#' Count isolates
|
|
#'
|
|
#' @description These functions can be used to count resistant/susceptible microbial isolates. All functions can be used in \code{dplyr}s \code{\link[dplyr]{summarise}} and support grouped variables, see \emph{Examples}.
|
|
#'
|
|
#' \code{count_R} and \code{count_IR} can be used to count resistant isolates, \code{count_S} and \code{count_SI} can be used to count susceptible isolates.\cr
|
|
#' @inheritParams portion
|
|
#' @details \strong{Remember that you should filter your table to let it contain only first isolates!} Use \code{\link{first_isolate}} to determine them in your data set.
|
|
#'
|
|
#' These functions are meant to count isolates. Use the \code{\link{portion}_*} functions to calculate microbial resistance.
|
|
#'
|
|
#' \code{count_df} takes any variable from \code{data} that has an \code{"rsi"} class (created with \code{\link{as.rsi}}) and counts the amounts of R, I and S. The resulting \emph{tidy data} (see Source) \code{data.frame} will have three rows (S/I/R) and a column for each variable with class \code{"rsi"}.
|
|
#' @source Wickham H. \strong{Tidy Data.} The Journal of Statistical Software, vol. 59, 2014. \url{http://vita.had.co.nz/papers/tidy-data.html}
|
|
#' @seealso \code{\link{portion}_*} to calculate microbial resistance and susceptibility.\cr
|
|
#' \code{\link{n_rsi}} to count all cases where antimicrobial results are available.
|
|
#' @keywords resistance susceptibility rsi antibiotics isolate isolates
|
|
#' @return Integer
|
|
#' @rdname count
|
|
#' @name count
|
|
#' @export
|
|
#' @examples
|
|
#' # septic_patients is a data set available in the AMR package. It is true, genuine data.
|
|
#' ?septic_patients
|
|
#'
|
|
#' # Count resistant isolates
|
|
#' count_R(septic_patients$amox)
|
|
#' count_IR(septic_patients$amox)
|
|
#'
|
|
#' # Or susceptibile isolates
|
|
#' count_S(septic_patients$amox)
|
|
#' count_SI(septic_patients$amox)
|
|
#'
|
|
#' # Since n_rsi counts available isolates, you can
|
|
#' # calculate back to count e.g. non-susceptible isolates.
|
|
#' # This results in the same:
|
|
#' count_IR(septic_patients$amox)
|
|
#' portion_IR(septic_patients$amox) * n_rsi(septic_patients$amox)
|
|
#'
|
|
#' library(dplyr)
|
|
#' septic_patients %>%
|
|
#' group_by(hospital_id) %>%
|
|
#' summarise(R = count_R(cipr),
|
|
#' I = count_I(cipr),
|
|
#' S = count_S(cipr),
|
|
#' n = n_rsi(cipr), # the actual total; sum of all three
|
|
#' total = n()) # NOT the amount of tested isolates!
|
|
#'
|
|
#' # Count co-resistance between amoxicillin/clav acid and gentamicin,
|
|
#' # so we can see that combination therapy does a lot more than mono therapy.
|
|
#' # Please mind that `portion_S` calculates percentages right away instead.
|
|
#' count_S(septic_patients$amcl) # S = 1056 (67.3%)
|
|
#' n_rsi(septic_patients$amcl) # n = 1570
|
|
#'
|
|
#' count_S(septic_patients$gent) # S = 1363 (74.0%)
|
|
#' n_rsi(septic_patients$gent) # n = 1842
|
|
#'
|
|
#' with(septic_patients,
|
|
#' count_S(amcl, gent)) # S = 1385 (92.1%)
|
|
#' with(septic_patients, # n = 1504
|
|
#' n_rsi(amcl, gent))
|
|
#'
|
|
#' # Get portions S/I/R immediately of all rsi columns
|
|
#' septic_patients %>%
|
|
#' select(amox, cipr) %>%
|
|
#' count_df(translate = FALSE)
|
|
#'
|
|
#' # It also supports grouping variables
|
|
#' septic_patients %>%
|
|
#' select(hospital_id, amox, cipr) %>%
|
|
#' group_by(hospital_id) %>%
|
|
#' count_df(translate = FALSE)
|
|
#'
|
|
count_R <- function(ab1,
|
|
ab2 = NULL) {
|
|
rsi_calc(type = "R",
|
|
ab1 = ab1,
|
|
ab2 = ab2,
|
|
include_I = FALSE,
|
|
minimum = 0,
|
|
as_percent = FALSE,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_IR <- function(ab1,
|
|
ab2 = NULL) {
|
|
rsi_calc(type = "R",
|
|
ab1 = ab1,
|
|
ab2 = ab2,
|
|
include_I = TRUE,
|
|
minimum = 0,
|
|
as_percent = FALSE,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_I <- function(ab1) {
|
|
rsi_calc(type = "I",
|
|
ab1 = ab1,
|
|
ab2 = NULL,
|
|
include_I = FALSE,
|
|
minimum = 0,
|
|
as_percent = FALSE,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_SI <- function(ab1,
|
|
ab2 = NULL) {
|
|
rsi_calc(type = "S",
|
|
ab1 = ab1,
|
|
ab2 = ab2,
|
|
include_I = TRUE,
|
|
minimum = 0,
|
|
as_percent = FALSE,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_S <- function(ab1,
|
|
ab2 = NULL) {
|
|
rsi_calc(type = "S",
|
|
ab1 = ab1,
|
|
ab2 = ab2,
|
|
include_I = FALSE,
|
|
minimum = 0,
|
|
as_percent = FALSE,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @importFrom dplyr %>% select_if bind_rows summarise_if mutate group_vars select everything
|
|
#' @export
|
|
count_df <- function(data,
|
|
translate_ab = getOption("get_antibiotic_names", "official")) {
|
|
|
|
if (data %>% select_if(is.rsi) %>% ncol() == 0) {
|
|
stop("No columns with class 'rsi' found. See ?as.rsi.")
|
|
}
|
|
|
|
if (as.character(translate_ab) == "TRUE") {
|
|
translate_ab <- "official"
|
|
}
|
|
options(get_antibiotic_names = translate_ab)
|
|
|
|
resS <- summarise_if(.tbl = data,
|
|
.predicate = is.rsi,
|
|
.funs = count_S) %>%
|
|
mutate(Interpretation = "S") %>%
|
|
select(Interpretation, everything())
|
|
|
|
resI <- summarise_if(.tbl = data,
|
|
.predicate = is.rsi,
|
|
.funs = count_I) %>%
|
|
mutate(Interpretation = "I") %>%
|
|
select(Interpretation, everything())
|
|
|
|
resR <- summarise_if(.tbl = data,
|
|
.predicate = is.rsi,
|
|
.funs = count_R) %>%
|
|
mutate(Interpretation = "R") %>%
|
|
select(Interpretation, everything())
|
|
|
|
data.groups <- group_vars(data)
|
|
|
|
res <- bind_rows(resS, resI, resR) %>%
|
|
mutate(Interpretation = factor(Interpretation, levels = c("R", "I", "S"), ordered = TRUE)) %>%
|
|
tidyr::gather(Antibiotic, Count, -Interpretation, -data.groups)
|
|
|
|
if (!translate_ab == FALSE) {
|
|
if (!tolower(translate_ab) %in% tolower(colnames(AMR::antibiotics))) {
|
|
stop("Parameter `translate_ab` does not occur in the `antibiotics` data set.", call. = FALSE)
|
|
}
|
|
res <- res %>% mutate(Antibiotic = abname(Antibiotic, from = "guess", to = translate_ab))
|
|
}
|
|
|
|
res
|
|
}
|