mirror of https://github.com/msberends/AMR.git
446 lines
18 KiB
R
Executable File
446 lines
18 KiB
R
Executable File
# ==================================================================== #
|
|
# TITLE #
|
|
# AMR: An R Package for Working with Antimicrobial Resistance Data #
|
|
# #
|
|
# SOURCE #
|
|
# https://github.com/msberends/AMR #
|
|
# #
|
|
# CITE AS #
|
|
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
|
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
|
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
|
# doi:10.18637/jss.v104.i03 #
|
|
# #
|
|
# Developed at the University of Groningen, the Netherlands, in #
|
|
# collaboration with non-profit organisations Certe Medical #
|
|
# Diagnostics & Advice, and University Medical Center Groningen. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# #
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
|
# ==================================================================== #
|
|
|
|
#' PCA Biplot with `ggplot2`
|
|
#'
|
|
#' Produces a `ggplot2` variant of a so-called [biplot](https://en.wikipedia.org/wiki/Biplot) for PCA (principal component analysis), but is more flexible and more appealing than the base \R [biplot()] function.
|
|
#' @param x an object returned by [pca()], [prcomp()] or [princomp()]
|
|
#' @inheritParams stats::biplot.prcomp
|
|
#' @param labels an optional vector of labels for the observations. If set, the labels will be placed below their respective points. When using the [pca()] function as input for `x`, this will be determined automatically based on the attribute `non_numeric_cols`, see [pca()].
|
|
#' @param labels_textsize the size of the text used for the labels
|
|
#' @param labels_text_placement adjustment factor the placement of the variable names (`>=1` means further away from the arrow head)
|
|
#' @param groups an optional vector of groups for the labels, with the same length as `labels`. If set, the points and labels will be coloured according to these groups. When using the [pca()] function as input for `x`, this will be determined automatically based on the attribute `non_numeric_cols`, see [pca()].
|
|
#' @param ellipse a [logical] to indicate whether a normal data ellipse should be drawn for each group (set with `groups`)
|
|
#' @param ellipse_prob statistical size of the ellipse in normal probability
|
|
#' @param ellipse_size the size of the ellipse line
|
|
#' @param ellipse_alpha the alpha (transparency) of the ellipse line
|
|
#' @param points_size the size of the points
|
|
#' @param points_alpha the alpha (transparency) of the points
|
|
#' @param arrows a [logical] to indicate whether arrows should be drawn
|
|
#' @param arrows_textsize the size of the text for variable names
|
|
#' @param arrows_colour the colour of the arrow and their text
|
|
#' @param arrows_size the size (thickness) of the arrow lines
|
|
#' @param arrows_textsize the size of the text at the end of the arrows
|
|
#' @param arrows_textangled a [logical] whether the text at the end of the arrows should be angled
|
|
#' @param arrows_alpha the alpha (transparency) of the arrows and their text
|
|
#' @param base_textsize the text size for all plot elements except the labels and arrows
|
|
#' @param ... arguments passed on to functions
|
|
#' @source The [ggplot_pca()] function is based on the `ggbiplot()` function from the `ggbiplot` package by Vince Vu, as found on GitHub: <https://github.com/vqv/ggbiplot> (retrieved: 2 March 2020, their latest commit: [`7325e88`](https://github.com/vqv/ggbiplot/commit/7325e880485bea4c07465a0304c470608fffb5d9); 12 February 2015).
|
|
#'
|
|
#' As per their GPL-2 licence that demands documentation of code changes, the changes made based on the source code were:
|
|
#' 1. Rewritten code to remove the dependency on packages `plyr`, `scales` and `grid`
|
|
#' 2. Parametrised more options, like arrow and ellipse settings
|
|
#' 3. Hardened all input possibilities by defining the exact type of user input for every argument
|
|
#' 4. Added total amount of explained variance as a caption in the plot
|
|
#' 5. Cleaned all syntax based on the `lintr` package, fixed grammatical errors and added integrity checks
|
|
#' 6. Updated documentation
|
|
#' @details The colours for labels and points can be changed by adding another scale layer for colour, such as `scale_colour_viridis_d()` and `scale_colour_brewer()`.
|
|
#' @rdname ggplot_pca
|
|
#' @export
|
|
#' @examples
|
|
#' # `example_isolates` is a data set available in the AMR package.
|
|
#' # See ?example_isolates.
|
|
#'
|
|
#' \donttest{
|
|
#' if (require("dplyr")) {
|
|
#' # calculate the resistance per group first
|
|
#' resistance_data <- example_isolates %>%
|
|
#' group_by(
|
|
#' order = mo_order(mo), # group on anything, like order
|
|
#' genus = mo_genus(mo)
|
|
#' ) %>% # and genus as we do here;
|
|
#' filter(n() >= 30) %>% # filter on only 30 results per group
|
|
#' summarise_if(is.rsi, resistance) # then get resistance of all drugs
|
|
#'
|
|
#' # now conduct PCA for certain antimicrobial drugs
|
|
#' pca_result <- resistance_data %>%
|
|
#' pca(AMC, CXM, CTX, CAZ, GEN, TOB, TMP, SXT)
|
|
#'
|
|
#' summary(pca_result)
|
|
#'
|
|
#' # old base R plotting method:
|
|
#' biplot(pca_result)
|
|
#'
|
|
#' # new ggplot2 plotting method using this package:
|
|
#' if (require("ggplot2")) {
|
|
#' ggplot_pca(pca_result)
|
|
#'
|
|
#' # still extendible with any ggplot2 function
|
|
#' ggplot_pca(pca_result) +
|
|
#' scale_colour_viridis_d() +
|
|
#' labs(title = "Title here")
|
|
#' }
|
|
#' }
|
|
#' }
|
|
ggplot_pca <- function(x,
|
|
choices = 1:2,
|
|
scale = 1,
|
|
pc.biplot = TRUE,
|
|
labels = NULL,
|
|
labels_textsize = 3,
|
|
labels_text_placement = 1.5,
|
|
groups = NULL,
|
|
ellipse = TRUE,
|
|
ellipse_prob = 0.68,
|
|
ellipse_size = 0.5,
|
|
ellipse_alpha = 0.5,
|
|
points_size = 2,
|
|
points_alpha = 0.25,
|
|
arrows = TRUE,
|
|
arrows_colour = "darkblue",
|
|
arrows_size = 0.5,
|
|
arrows_textsize = 3,
|
|
arrows_textangled = TRUE,
|
|
arrows_alpha = 0.75,
|
|
base_textsize = 10,
|
|
...) {
|
|
stop_ifnot_installed("ggplot2")
|
|
meet_criteria(x, allow_class = c("prcomp", "princomp", "PCA", "lda"))
|
|
meet_criteria(choices, allow_class = c("numeric", "integer"), has_length = 2, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(scale, allow_class = c("numeric", "integer", "logical"), has_length = 1)
|
|
meet_criteria(pc.biplot, allow_class = "logical", has_length = 1)
|
|
meet_criteria(labels, allow_class = "character", allow_NULL = TRUE)
|
|
meet_criteria(labels_textsize, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(labels_text_placement, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(groups, allow_class = "character", allow_NULL = TRUE)
|
|
meet_criteria(ellipse, allow_class = "logical", has_length = 1)
|
|
meet_criteria(ellipse_prob, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(ellipse_size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(ellipse_alpha, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(points_size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(points_alpha, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(arrows, allow_class = "logical", has_length = 1)
|
|
meet_criteria(arrows_colour, allow_class = "character", has_length = 1)
|
|
meet_criteria(arrows_size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(arrows_textsize, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(arrows_textangled, allow_class = "logical", has_length = 1)
|
|
meet_criteria(arrows_alpha, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(base_textsize, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
|
|
calculations <- pca_calculations(
|
|
pca_model = x,
|
|
groups = groups,
|
|
groups_missing = missing(groups),
|
|
labels = labels,
|
|
labels_missing = missing(labels),
|
|
choices = choices,
|
|
scale = scale,
|
|
pc.biplot = pc.biplot,
|
|
ellipse_prob = ellipse_prob,
|
|
labels_text_placement = labels_text_placement
|
|
)
|
|
choices <- calculations$choices
|
|
df.u <- calculations$df.u
|
|
df.v <- calculations$df.v
|
|
ell <- calculations$ell
|
|
groups <- calculations$groups
|
|
group_name <- calculations$group_name
|
|
labels <- calculations$labels
|
|
|
|
# Append the proportion of explained variance to the axis labels
|
|
if ((1 - as.integer(scale)) == 0) {
|
|
u.axis.labs <- paste0("Standardised PC", choices)
|
|
} else {
|
|
u.axis.labs <- paste0("PC", choices)
|
|
}
|
|
u.axis.labs <- paste0(
|
|
u.axis.labs,
|
|
paste0(
|
|
"\n(explained var: ",
|
|
percentage(x$sdev[choices]^2 / sum(x$sdev^2)),
|
|
")"
|
|
)
|
|
)
|
|
|
|
# Score Labels
|
|
if (!is.null(labels)) {
|
|
df.u$labels <- labels
|
|
}
|
|
|
|
# Grouping variable
|
|
if (!is.null(groups)) {
|
|
df.u$groups <- groups
|
|
}
|
|
|
|
# Base plot
|
|
g <- ggplot2::ggplot(
|
|
data = df.u,
|
|
ggplot2::aes(x = xvar, y = yvar)
|
|
) +
|
|
ggplot2::xlab(u.axis.labs[1]) +
|
|
ggplot2::ylab(u.axis.labs[2]) +
|
|
ggplot2::expand_limits(
|
|
x = c(-1.15, 1.15),
|
|
y = c(-1.15, 1.15)
|
|
)
|
|
|
|
# Draw either labels or points
|
|
if (!is.null(df.u$labels)) {
|
|
if (!is.null(df.u$groups)) {
|
|
g <- g + ggplot2::geom_point(ggplot2::aes(colour = groups),
|
|
alpha = points_alpha,
|
|
size = points_size
|
|
) +
|
|
ggplot2::geom_text(ggplot2::aes(label = labels, colour = groups),
|
|
nudge_y = -0.05,
|
|
size = labels_textsize
|
|
) +
|
|
ggplot2::labs(colour = group_name)
|
|
} else {
|
|
g <- g + ggplot2::geom_point(
|
|
alpha = points_alpha,
|
|
size = points_size
|
|
) +
|
|
ggplot2::geom_text(ggplot2::aes(label = labels),
|
|
nudge_y = -0.05,
|
|
size = labels_textsize
|
|
)
|
|
}
|
|
} else {
|
|
if (!is.null(df.u$groups)) {
|
|
g <- g + ggplot2::geom_point(ggplot2::aes(colour = groups),
|
|
alpha = points_alpha,
|
|
size = points_size
|
|
) +
|
|
ggplot2::labs(colour = group_name)
|
|
} else {
|
|
g <- g + ggplot2::geom_point(
|
|
alpha = points_alpha,
|
|
size = points_size
|
|
)
|
|
}
|
|
}
|
|
|
|
# Overlay a concentration ellipse if there are groups
|
|
if (!is.null(df.u$groups) && !is.null(ell) && isTRUE(ellipse)) {
|
|
g <- g + ggplot2::geom_path(
|
|
data = ell,
|
|
ggplot2::aes(colour = groups, group = groups),
|
|
size = ellipse_size,
|
|
alpha = points_alpha
|
|
)
|
|
}
|
|
|
|
# Label the variable axes
|
|
if (arrows == TRUE) {
|
|
g <- g + ggplot2::geom_segment(
|
|
data = df.v,
|
|
ggplot2::aes(x = 0, y = 0, xend = xvar, yend = yvar),
|
|
arrow = ggplot2::arrow(
|
|
length = ggplot2::unit(0.5, "picas"),
|
|
angle = 20,
|
|
ends = "last",
|
|
type = "open"
|
|
),
|
|
colour = arrows_colour,
|
|
size = arrows_size,
|
|
alpha = arrows_alpha
|
|
)
|
|
if (arrows_textangled == TRUE) {
|
|
g <- g + ggplot2::geom_text(
|
|
data = df.v,
|
|
ggplot2::aes(label = varname, x = xvar, y = yvar, angle = angle, hjust = hjust),
|
|
colour = arrows_colour,
|
|
size = arrows_textsize,
|
|
alpha = arrows_alpha
|
|
)
|
|
} else {
|
|
g <- g + ggplot2::geom_text(
|
|
data = df.v,
|
|
ggplot2::aes(label = varname, x = xvar, y = yvar, hjust = hjust),
|
|
colour = arrows_colour,
|
|
size = arrows_textsize,
|
|
alpha = arrows_alpha
|
|
)
|
|
}
|
|
}
|
|
|
|
# Add caption label about total explained variance
|
|
g <- g + ggplot2::labs(caption = paste0(
|
|
"Total explained variance: ",
|
|
percentage(sum(x$sdev[choices]^2 / sum(x$sdev^2)))
|
|
))
|
|
|
|
# mark-up nicely
|
|
g <- g + ggplot2::theme_minimal(base_size = base_textsize) +
|
|
ggplot2::theme(
|
|
panel.grid.major = ggplot2::element_line(colour = "grey85"),
|
|
panel.grid.minor = ggplot2::element_blank(),
|
|
# centre title and subtitle
|
|
plot.title = ggplot2::element_text(hjust = 0.5),
|
|
plot.subtitle = ggplot2::element_text(hjust = 0.5)
|
|
)
|
|
|
|
g
|
|
}
|
|
|
|
#' @importFrom stats qchisq var
|
|
pca_calculations <- function(pca_model,
|
|
groups = NULL,
|
|
groups_missing = TRUE,
|
|
labels = NULL,
|
|
labels_missing = TRUE,
|
|
choices = 1:2,
|
|
scale = 1,
|
|
pc.biplot = TRUE,
|
|
ellipse_prob = 0.68,
|
|
labels_text_placement = 1.5) {
|
|
non_numeric_cols <- attributes(pca_model)$non_numeric_cols
|
|
if (groups_missing) {
|
|
groups <- tryCatch(non_numeric_cols[[1]],
|
|
error = function(e) NULL
|
|
)
|
|
group_name <- tryCatch(colnames(non_numeric_cols[1]),
|
|
error = function(e) NULL
|
|
)
|
|
}
|
|
if (labels_missing) {
|
|
labels <- tryCatch(non_numeric_cols[[2]],
|
|
error = function(e) NULL
|
|
)
|
|
}
|
|
if (!is.null(groups) && is.null(labels)) {
|
|
# turn them around
|
|
labels <- groups
|
|
groups <- NULL
|
|
group_name <- NULL
|
|
}
|
|
|
|
# Recover the SVD
|
|
if (inherits(pca_model, "prcomp")) {
|
|
nobs.factor <- sqrt(nrow(pca_model$x) - 1)
|
|
d <- pca_model$sdev
|
|
u <- sweep(pca_model$x, 2, 1 / (d * nobs.factor), FUN = "*")
|
|
v <- pca_model$rotation
|
|
} else if (inherits(pca_model, "princomp")) {
|
|
nobs.factor <- sqrt(pca_model$n.obs)
|
|
d <- pca_model$sdev
|
|
u <- sweep(pca_model$scores, 2, 1 / (d * nobs.factor), FUN = "*")
|
|
v <- pca_model$loadings
|
|
} else if (inherits(pca_model, "PCA")) {
|
|
nobs.factor <- sqrt(nrow(pca_model$call$X))
|
|
d <- unlist(sqrt(pca_model$eig)[1])
|
|
u <- sweep(pca_model$ind$coord, 2, 1 / (d * nobs.factor), FUN = "*")
|
|
v <- sweep(pca_model$var$coord, 2, sqrt(pca_model$eig[seq_len(ncol(pca_model$var$coord)), 1]), FUN = "/")
|
|
} else if (inherits(pca_model, "lda")) {
|
|
nobs.factor <- sqrt(pca_model$N)
|
|
d <- pca_model$svd
|
|
u <- predict(pca_model)$x / nobs.factor
|
|
v <- pca_model$scaling
|
|
} else {
|
|
stop("Expected an object of class prcomp, princomp, PCA, or lda")
|
|
}
|
|
|
|
# Scores
|
|
choices <- pmin(choices, ncol(u))
|
|
obs.scale <- 1 - as.integer(scale)
|
|
df.u <- as.data.frame(sweep(u[, choices], 2, d[choices]^obs.scale, FUN = "*"),
|
|
stringsAsFactors = FALSE
|
|
)
|
|
|
|
# Directions
|
|
v <- sweep(v, 2, d^as.integer(scale), FUN = "*")
|
|
df.v <- as.data.frame(v[, choices],
|
|
stringsAsFactors = FALSE
|
|
)
|
|
|
|
names(df.u) <- c("xvar", "yvar")
|
|
names(df.v) <- names(df.u)
|
|
|
|
if (isTRUE(pc.biplot)) {
|
|
df.u <- df.u * nobs.factor
|
|
}
|
|
|
|
# Scale the radius of the correlation circle so that it corresponds to
|
|
# a data ellipse for the standardized PC scores
|
|
circle_prob <- 0.69
|
|
r <- sqrt(qchisq(circle_prob, df = 2)) * prod(colMeans(df.u^2))^(0.25)
|
|
|
|
# Scale directions
|
|
v.scale <- rowSums(v^2)
|
|
df.v <- r * df.v / sqrt(max(v.scale))
|
|
|
|
# Grouping variable
|
|
if (!is.null(groups)) {
|
|
df.u$groups <- groups
|
|
}
|
|
|
|
df.v$varname <- rownames(v)
|
|
|
|
# Variables for text label placement
|
|
df.v$angle <- with(df.v, (180 / pi) * atan(yvar / xvar))
|
|
df.v$hjust <- with(df.v, (1 - labels_text_placement * sign(xvar)) / 2)
|
|
|
|
if (!is.null(df.u$groups)) {
|
|
theta <- c(seq(-pi, pi, length = 50), seq(pi, -pi, length = 50))
|
|
circle <- cbind(cos(theta), sin(theta))
|
|
|
|
df.groups <- lapply(unique(df.u$groups), function(g, df = df.u) {
|
|
x <- df[which(df$groups == g), , drop = FALSE]
|
|
if (nrow(x) <= 2) {
|
|
return(data.frame(
|
|
X1 = numeric(0),
|
|
X2 = numeric(0),
|
|
groups = character(0),
|
|
stringsAsFactors = FALSE
|
|
))
|
|
}
|
|
sigma <- var(cbind(x$xvar, x$yvar))
|
|
mu <- c(mean(x$xvar), mean(x$yvar))
|
|
ed <- sqrt(qchisq(ellipse_prob, df = 2))
|
|
data.frame(sweep(circle %*% chol(sigma) * ed,
|
|
MARGIN = 2,
|
|
STATS = mu,
|
|
FUN = "+"
|
|
),
|
|
groups = x$groups[1],
|
|
stringsAsFactors = FALSE
|
|
)
|
|
})
|
|
ell <- do.call(rbind, df.groups)
|
|
if (NROW(ell) == 0) {
|
|
ell <- NULL
|
|
} else {
|
|
names(ell)[1:2] <- c("xvar", "yvar")
|
|
}
|
|
} else {
|
|
ell <- NULL
|
|
}
|
|
|
|
list(
|
|
choices = choices,
|
|
df.u = df.u,
|
|
df.v = df.v,
|
|
ell = ell,
|
|
groups = groups,
|
|
group_name = group_name,
|
|
labels = labels
|
|
)
|
|
}
|