AMR/docs/reference/pca.html

378 lines
17 KiB
HTML

<!-- Generated by pkgdown: do not edit by hand -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Principal Component Analysis (for AMR) — pca • AMR (for R)</title>
<!-- favicons -->
<link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png">
<link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png">
<link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png" />
<link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png" />
<link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png" />
<link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png" />
<!-- jquery -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
<!-- Bootstrap -->
<link href="https://cdnjs.cloudflare.com/ajax/libs/bootswatch/3.4.0/flatly/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous" />
<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<!-- bootstrap-toc -->
<link rel="stylesheet" href="../bootstrap-toc.css">
<script src="../bootstrap-toc.js"></script>
<!-- Font Awesome icons -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
<!-- clipboard.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
<!-- headroom.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
<!-- pkgdown -->
<link href="../pkgdown.css" rel="stylesheet">
<script src="../pkgdown.js"></script>
<link href="../extra.css" rel="stylesheet">
<script src="../extra.js"></script>
<meta property="og:title" content="Principal Component Analysis (for AMR) — pca" />
<meta property="og:description" content="Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables." />
<meta property="og:image" content="https://msberends.github.io/AMR/logo.png" />
<!-- mathjax -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container template-reference-topic">
<header>
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.7.0</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../index.html">
<span class="fas fa-home"></span>
Home
</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
<span class="fas fa-question-circle"></span>
How to
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="../articles/AMR.html">
<span class="fas fa-directions"></span>
Conduct AMR analysis
</a>
</li>
<li>
<a href="../articles/resistance_predict.html">
<span class="fas fa-dice"></span>
Predict antimicrobial resistance
</a>
</li>
<li>
<a href="../articles/datasets.html">
<span class="fas fa-database"></span>
Data sets for download / own use
</a>
</li>
<li>
<a href="../articles/PCA.html">
<span class="fas fa-compress"></span>
Conduct principal component analysis for AMR
</a>
</li>
<li>
<a href="../articles/MDR.html">
<span class="fas fa-skull-crossbones"></span>
Determine multi-drug resistance (MDR)
</a>
</li>
<li>
<a href="../articles/WHONET.html">
<span class="fas fa-globe-americas"></span>
Work with WHONET data
</a>
</li>
<li>
<a href="../articles/SPSS.html">
<span class="fas fa-file-upload"></span>
Import data from SPSS/SAS/Stata
</a>
</li>
<li>
<a href="../articles/EUCAST.html">
<span class="fas fa-exchange-alt"></span>
Apply EUCAST rules
</a>
</li>
<li>
<a href="../reference/mo_property.html">
<span class="fas fa-bug"></span>
Get properties of a microorganism
</a>
</li>
<li>
<a href="../reference/ab_property.html">
<span class="fas fa-capsules"></span>
Get properties of an antibiotic
</a>
</li>
<li>
<a href="../articles/benchmarks.html">
<span class="fas fa-shipping-fast"></span>
Other: benchmarks
</a>
</li>
</ul>
</li>
<li>
<a href="../reference/index.html">
<span class="fas fa-book-open"></span>
Manual
</a>
</li>
<li>
<a href="../authors.html">
<span class="fas fa-users"></span>
Authors
</a>
</li>
<li>
<a href="../news/index.html">
<span class="far fa-newspaper"></span>
Changelog
</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/msberends/AMR">
<span class="fab fa-github"></span>
Source Code
</a>
</li>
<li>
<a href="../survey.html">
<span class="fas fa-clipboard-list"></span>
Survey
</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header>
<div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Principal Component Analysis (for AMR)</h1>
<small class="dont-index">Source: <a href='https://github.com/msberends/AMR/blob/master/R/pca.R'><code>R/pca.R</code></a></small>
<div class="hidden name"><code>pca.Rd</code></div>
</div>
<div class="ref-description">
<p>Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables.</p>
</div>
<pre class="usage"><span class='fu'>pca</span><span class='op'>(</span>
<span class='va'>x</span>,
<span class='va'>...</span>,
retx <span class='op'>=</span> <span class='cn'>TRUE</span>,
center <span class='op'>=</span> <span class='cn'>TRUE</span>,
scale. <span class='op'>=</span> <span class='cn'>TRUE</span>,
tol <span class='op'>=</span> <span class='cn'>NULL</span>,
rank. <span class='op'>=</span> <span class='cn'>NULL</span>
<span class='op'>)</span></pre>
<h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
<table class="ref-arguments">
<colgroup><col class="name" /><col class="desc" /></colgroup>
<tr>
<th>x</th>
<td><p>a <a href='https://rdrr.io/r/base/data.frame.html'>data.frame</a> containing <a href='https://rdrr.io/r/base/numeric.html'>numeric</a> columns</p></td>
</tr>
<tr>
<th>...</th>
<td><p>columns of <code>x</code> to be selected for PCA, can be unquoted since it supports quasiquotation.</p></td>
</tr>
<tr>
<th>retx</th>
<td><p>a logical value indicating whether the rotated variables
should be returned.</p></td>
</tr>
<tr>
<th>center</th>
<td><p>a logical value indicating whether the variables
should be shifted to be zero centered. Alternately, a vector of
length equal the number of columns of <code>x</code> can be supplied.
The value is passed to <code>scale</code>.</p></td>
</tr>
<tr>
<th>scale.</th>
<td><p>a logical value indicating whether the variables should
be scaled to have unit variance before the analysis takes
place. The default is <code>FALSE</code> for consistency with S, but
in general scaling is advisable. Alternatively, a vector of length
equal the number of columns of <code>x</code> can be supplied. The
value is passed to <code><a href='https://rdrr.io/r/base/scale.html'>scale</a></code>.</p></td>
</tr>
<tr>
<th>tol</th>
<td><p>a value indicating the magnitude below which components
should be omitted. (Components are omitted if their
standard deviations are less than or equal to <code>tol</code> times the
standard deviation of the first component.) With the default null
setting, no components are omitted (unless <code>rank.</code> is specified
less than <code><a href='https://rdrr.io/r/base/Extremes.html'>min(dim(x))</a></code>.). Other settings for tol could be
<code>tol = 0</code> or <code>tol = sqrt(.Machine$double.eps)</code>, which
would omit essentially constant components.</p></td>
</tr>
<tr>
<th>rank.</th>
<td><p>optionally, a number specifying the maximal rank, i.e.,
maximal number of principal components to be used. Can be set as
alternative or in addition to <code>tol</code>, useful notably when the
desired rank is considerably smaller than the dimensions of the matrix.</p></td>
</tr>
</table>
<h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
<p>An object of classes pca and <a href='https://rdrr.io/r/stats/prcomp.html'>prcomp</a></p>
<h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
<p>The <code>pca()</code> function takes a <a href='https://rdrr.io/r/base/data.frame.html'>data.frame</a> as input and performs the actual PCA with the <span style="R">R</span> function <code><a href='https://rdrr.io/r/stats/prcomp.html'>prcomp()</a></code>.</p>
<p>The result of the <code>pca()</code> function is a <a href='https://rdrr.io/r/stats/prcomp.html'>prcomp</a> object, with an additional attribute <code>non_numeric_cols</code> which is a vector with the column names of all columns that do not contain <a href='https://rdrr.io/r/base/numeric.html'>numeric</a> values. These are probably the groups and labels, and will be used by <code><a href='ggplot_pca.html'>ggplot_pca()</a></code>.</p>
<h2 class="hasAnchor" id="stable-lifecycle"><a class="anchor" href="#stable-lifecycle"></a>Stable Lifecycle</h2>
<p><img src='figures/lifecycle_stable.svg' style=margin-bottom:5px /> <br />
The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</strong>. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.</p>
<p>If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.</p>
<h2 class="hasAnchor" id="read-more-on-our-website-"><a class="anchor" href="#read-more-on-our-website-"></a>Read more on Our Website!</h2>
<p>On our website <a href='https://msberends.github.io/AMR/'>https://msberends.github.io/AMR/</a> you can find <a href='https://msberends.github.io/AMR/articles/AMR.html'>a comprehensive tutorial</a> about how to conduct AMR data analysis, the <a href='https://msberends.github.io/AMR/reference/'>complete documentation of all functions</a> and <a href='https://msberends.github.io/AMR/articles/WHONET.html'>an example analysis using WHONET data</a>. As we would like to better understand the backgrounds and needs of our users, please <a href='https://msberends.github.io/AMR/survey.html'>participate in our survey</a>!</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><span class='co'># `example_isolates` is a data set available in the AMR package.</span>
<span class='co'># See ?example_isolates.</span>
<span class='co'># \donttest{</span>
<span class='kw'>if</span> <span class='op'>(</span><span class='kw'><a href='https://rdrr.io/r/base/library.html'>require</a></span><span class='op'>(</span><span class='st'><a href='https://dplyr.tidyverse.org'>"dplyr"</a></span><span class='op'>)</span><span class='op'>)</span> <span class='op'>{</span>
<span class='co'># calculate the resistance per group first </span>
<span class='va'>resistance_data</span> <span class='op'>&lt;-</span> <span class='va'>example_isolates</span> <span class='op'>%&gt;%</span>
<span class='fu'><a href='https://dplyr.tidyverse.org/reference/group_by.html'>group_by</a></span><span class='op'>(</span>order <span class='op'>=</span> <span class='fu'><a href='mo_property.html'>mo_order</a></span><span class='op'>(</span><span class='va'>mo</span><span class='op'>)</span>, <span class='co'># group on anything, like order</span>
genus <span class='op'>=</span> <span class='fu'><a href='mo_property.html'>mo_genus</a></span><span class='op'>(</span><span class='va'>mo</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>%&gt;%</span> <span class='co'># and genus as we do here;</span>
<span class='fu'><a href='https://dplyr.tidyverse.org/reference/summarise_all.html'>summarise_if</a></span><span class='op'>(</span><span class='va'>is.rsi</span>, <span class='va'>resistance</span><span class='op'>)</span> <span class='co'># then get resistance of all drugs</span>
<span class='co'># now conduct PCA for certain antimicrobial agents</span>
<span class='va'>pca_result</span> <span class='op'>&lt;-</span> <span class='va'>resistance_data</span> <span class='op'>%&gt;%</span>
<span class='fu'>pca</span><span class='op'>(</span><span class='va'>AMC</span>, <span class='va'>CXM</span>, <span class='va'>CTX</span>, <span class='va'>CAZ</span>, <span class='va'>GEN</span>, <span class='va'>TOB</span>, <span class='va'>TMP</span>, <span class='va'>SXT</span><span class='op'>)</span>
<span class='va'>pca_result</span>
<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>pca_result</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/stats/biplot.html'>biplot</a></span><span class='op'>(</span><span class='va'>pca_result</span><span class='op'>)</span>
<span class='fu'><a href='ggplot_pca.html'>ggplot_pca</a></span><span class='op'>(</span><span class='va'>pca_result</span><span class='op'>)</span> <span class='co'># a new and convenient plot function</span>
<span class='op'>}</span>
<span class='co'># }</span>
</pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top">
<h2 data-toc-skip>Contents</h2>
</nav>
</div>
</div>
<footer>
<div class="copyright">
<p>Developed by <a href='https://www.rug.nl/staff/m.s.berends/'>Matthijs S. Berends</a>, <a href='https://www.rug.nl/staff/c.f.luz/'>Christian F. Luz</a>, <a href='https://www.rug.nl/staff/a.w.friedrich/'>Alexander W. Friedrich</a>, <a href='https://www.rug.nl/staff/b.sinha/'>Bhanu N. M. Sinha</a>, <a href='https://www.rug.nl/staff/c.j.albers/'>Casper J. Albers</a>, <a href='https://www.rug.nl/staff/c.glasner/'>Corinna Glasner</a>.</p>
</div>
<div class="pkgdown">
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
</div>
</footer>
</div>
</body>
</html>