mirror of
https://github.com/msberends/AMR.git
synced 2025-01-27 23:04:39 +01:00
370 lines
15 KiB
R
Executable File
370 lines
15 KiB
R
Executable File
# ==================================================================== #
|
|
# TITLE: #
|
|
# AMR: An R Package for Working with Antimicrobial Resistance Data #
|
|
# #
|
|
# SOURCE CODE: #
|
|
# https://github.com/msberends/AMR #
|
|
# #
|
|
# PLEASE CITE THIS SOFTWARE AS: #
|
|
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
|
|
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
|
|
# Journal of Statistical Software, 104(3), 1-31. #
|
|
# https://doi.org/10.18637/jss.v104.i03 #
|
|
# #
|
|
# Developed at the University of Groningen and the University Medical #
|
|
# Center Groningen in The Netherlands, in collaboration with many #
|
|
# colleagues from around the world, see our website. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# #
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
|
# ==================================================================== #
|
|
|
|
#' (Key) Antimicrobials for First Weighted Isolates
|
|
#'
|
|
#' These functions can be used to determine first weighted isolates by considering the phenotype for isolate selection (see [first_isolate()]). Using a phenotype-based method to determine first isolates is more reliable than methods that disregard phenotypes.
|
|
#' @param x a [data.frame] with antibiotics columns, like `AMX` or `amox`. Can be left blank to determine automatically
|
|
#' @param y,z [character] vectors to compare
|
|
#' @inheritParams first_isolate
|
|
#' @param universal names of **broad-spectrum** antimicrobial drugs, case-insensitive. Set to `NULL` to ignore. See *Details* for the default antimicrobial drugs
|
|
#' @param gram_negative names of antibiotic drugs for **Gram-positives**, case-insensitive. Set to `NULL` to ignore. See *Details* for the default antibiotic drugs
|
|
#' @param gram_positive names of antibiotic drugs for **Gram-negatives**, case-insensitive. Set to `NULL` to ignore. See *Details* for the default antibiotic drugs
|
|
#' @param antifungal names of antifungal drugs for **fungi**, case-insensitive. Set to `NULL` to ignore. See *Details* for the default antifungal drugs
|
|
#' @param only_sir_columns a [logical] to indicate whether only columns must be included that were transformed to class `sir` (see [as.sir()]) on beforehand (default is `FALSE`)
|
|
#' @param ... ignored, only in place to allow future extensions
|
|
#' @details
|
|
#' The [key_antimicrobials()] and [all_antimicrobials()] functions are context-aware. This means that the `x` argument can be left blank if used inside a [data.frame] call, see *Examples*.
|
|
#'
|
|
#' The function [key_antimicrobials()] returns a [character] vector with 12 antimicrobial results for every isolate. The function [all_antimicrobials()] returns a [character] vector with all antimicrobial drug results for every isolate. These vectors can then be compared using [antimicrobials_equal()], to check if two isolates have generally the same antibiogram. Missing and invalid values are replaced with a dot (`"."`) by [key_antimicrobials()] and ignored by [antimicrobials_equal()].
|
|
#'
|
|
#' Please see the [first_isolate()] function how these important functions enable the 'phenotype-based' method for determination of first isolates.
|
|
#'
|
|
#' The default antimicrobial drugs used for **all rows** (set in `universal`) are:
|
|
#'
|
|
#' - Ampicillin
|
|
#' - Amoxicillin/clavulanic acid
|
|
#' - Cefuroxime
|
|
#' - Ciprofloxacin
|
|
#' - Piperacillin/tazobactam
|
|
#' - Trimethoprim/sulfamethoxazole
|
|
#'
|
|
#' The default antimicrobial drugs used for **Gram-negative bacteria** (set in `gram_negative`) are:
|
|
#'
|
|
#' - Cefotaxime
|
|
#' - Ceftazidime
|
|
#' - Colistin
|
|
#' - Gentamicin
|
|
#' - Meropenem
|
|
#' - Tobramycin
|
|
#'
|
|
#' The default antimicrobial drugs used for **Gram-positive bacteria** (set in `gram_positive`) are:
|
|
#'
|
|
#' - Erythromycin
|
|
#' - Oxacillin
|
|
#' - Rifampin
|
|
#' - Teicoplanin
|
|
#' - Tetracycline
|
|
#' - Vancomycin
|
|
#'
|
|
#'
|
|
#' The default antimicrobial drugs used for **fungi** (set in `antifungal`) are:
|
|
#'
|
|
#' - Anidulafungin
|
|
#' - Caspofungin
|
|
#' - Fluconazole
|
|
#' - Miconazole
|
|
#' - Nystatin
|
|
#' - Voriconazole
|
|
#' @rdname key_antimicrobials
|
|
#' @export
|
|
#' @seealso [first_isolate()]
|
|
#' @examples
|
|
#' # `example_isolates` is a data set available in the AMR package.
|
|
#' # See ?example_isolates.
|
|
#'
|
|
#' # output of the `key_antimicrobials()` function could be like this:
|
|
#' strainA <- "SSSRR.S.R..S"
|
|
#' strainB <- "SSSIRSSSRSSS"
|
|
#'
|
|
#' # those strings can be compared with:
|
|
#' antimicrobials_equal(strainA, strainB, type = "keyantimicrobials")
|
|
#' # TRUE, because I is ignored (as well as missing values)
|
|
#'
|
|
#' antimicrobials_equal(strainA, strainB, type = "keyantimicrobials", ignore_I = FALSE)
|
|
#' # FALSE, because I is not ignored and so the 4th [character] differs
|
|
#'
|
|
#' \donttest{
|
|
#' if (require("dplyr")) {
|
|
#' # set key antibiotics to a new variable
|
|
#' my_patients <- example_isolates %>%
|
|
#' mutate(keyab = key_antimicrobials(antifungal = NULL)) %>% # no need to define `x`
|
|
#' mutate(
|
|
#' # now calculate first isolates
|
|
#' first_regular = first_isolate(col_keyantimicrobials = FALSE),
|
|
#' # and first WEIGHTED isolates
|
|
#' first_weighted = first_isolate(col_keyantimicrobials = "keyab")
|
|
#' )
|
|
#'
|
|
#' # Check the difference in this data set, 'weighted' results in more isolates:
|
|
#' sum(my_patients$first_regular, na.rm = TRUE)
|
|
#' sum(my_patients$first_weighted, na.rm = TRUE)
|
|
#' }
|
|
#' }
|
|
key_antimicrobials <- function(x = NULL,
|
|
col_mo = NULL,
|
|
universal = c(
|
|
"ampicillin", "amoxicillin/clavulanic acid", "cefuroxime",
|
|
"piperacillin/tazobactam", "ciprofloxacin", "trimethoprim/sulfamethoxazole"
|
|
),
|
|
gram_negative = c(
|
|
"gentamicin", "tobramycin", "colistin",
|
|
"cefotaxime", "ceftazidime", "meropenem"
|
|
),
|
|
gram_positive = c(
|
|
"vancomycin", "teicoplanin", "tetracycline",
|
|
"erythromycin", "oxacillin", "rifampin"
|
|
),
|
|
antifungal = c(
|
|
"anidulafungin", "caspofungin", "fluconazole",
|
|
"miconazole", "nystatin", "voriconazole"
|
|
),
|
|
only_sir_columns = FALSE,
|
|
...) {
|
|
if (is_null_or_grouped_tbl(x)) {
|
|
# when `x` is left blank, auto determine it (get_current_data() searches underlying data within call)
|
|
# is also fix for using a grouped df as input (a dot as first argument)
|
|
x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x)
|
|
}
|
|
meet_criteria(x, allow_class = "data.frame") # also checks dimensions to be >0
|
|
meet_criteria(col_mo, allow_class = "character", has_length = 1, allow_NULL = TRUE, allow_NA = TRUE, is_in = colnames(x))
|
|
meet_criteria(universal, allow_class = "character", allow_NULL = TRUE)
|
|
meet_criteria(gram_negative, allow_class = "character", allow_NULL = TRUE)
|
|
meet_criteria(gram_positive, allow_class = "character", allow_NULL = TRUE)
|
|
meet_criteria(antifungal, allow_class = "character", allow_NULL = TRUE)
|
|
meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1)
|
|
|
|
# force regular data.frame, not a tibble or data.table
|
|
x <- as.data.frame(x, stringsAsFactors = FALSE)
|
|
cols <- get_column_abx(x, info = FALSE, only_sir_columns = only_sir_columns, fn = "key_antimicrobials")
|
|
|
|
# try to find columns based on type
|
|
# -- mo
|
|
if (is.null(col_mo)) {
|
|
col_mo <- search_type_in_df(x = x, type = "mo", info = FALSE)
|
|
}
|
|
if (is.null(col_mo)) {
|
|
warning_("in `key_antimicrobials()`: no column found for `col_mo`, ignoring antibiotics set in `gram_negative` and `gram_positive`, and antimycotics set in `antifungal`")
|
|
gramstain <- NA_character_
|
|
kingdom <- NA_character_
|
|
} else {
|
|
x.mo <- as.mo(x[, col_mo, drop = TRUE])
|
|
gramstain <- mo_gramstain(x.mo, language = NULL)
|
|
kingdom <- mo_kingdom(x.mo, language = NULL)
|
|
}
|
|
|
|
AMR_string <- function(x, values, name, filter, cols = cols) {
|
|
if (is.null(values)) {
|
|
return(rep(NA_character_, length(which(filter))))
|
|
}
|
|
|
|
values_old_length <- length(values)
|
|
values <- as.ab(values, flag_multiple_results = FALSE, info = FALSE)
|
|
values <- cols[names(cols) %in% values]
|
|
values_new_length <- length(values)
|
|
|
|
if (values_new_length < values_old_length &&
|
|
any(filter, na.rm = TRUE) &&
|
|
message_not_thrown_before("key_antimicrobials", name)) {
|
|
warning_(
|
|
"in `key_antimicrobials()`: ",
|
|
ifelse(values_new_length == 0,
|
|
"No columns available ",
|
|
paste0("Only using ", values_new_length, " out of ", values_old_length, " defined columns ")
|
|
),
|
|
"as key antimicrobials for ", name, "s. See `?key_antimicrobials`."
|
|
)
|
|
}
|
|
|
|
generate_antimcrobials_string(x[which(filter), c(universal, values), drop = FALSE])
|
|
}
|
|
|
|
if (is.null(universal)) {
|
|
universal <- character(0)
|
|
} else {
|
|
universal <- as.ab(universal, flag_multiple_results = FALSE, info = FALSE)
|
|
universal <- cols[names(cols) %in% universal]
|
|
}
|
|
|
|
key_ab <- rep(NA_character_, nrow(x))
|
|
|
|
key_ab[which(gramstain == "Gram-negative")] <- AMR_string(
|
|
x = x,
|
|
values = gram_negative,
|
|
name = "Gram-negative",
|
|
filter = gramstain == "Gram-negative",
|
|
cols = cols
|
|
)
|
|
|
|
key_ab[which(gramstain == "Gram-positive")] <- AMR_string(
|
|
x = x,
|
|
values = gram_positive,
|
|
name = "Gram-positive",
|
|
filter = gramstain == "Gram-positive",
|
|
cols = cols
|
|
)
|
|
|
|
key_ab[which(kingdom == "Fungi")] <- AMR_string(
|
|
x = x,
|
|
values = antifungal,
|
|
name = "antifungal",
|
|
filter = kingdom == "Fungi",
|
|
cols = cols
|
|
)
|
|
|
|
# back-up - only use `universal`
|
|
key_ab[which(is.na(key_ab))] <- AMR_string(
|
|
x = x,
|
|
values = character(0),
|
|
name = "",
|
|
filter = is.na(key_ab),
|
|
cols = cols
|
|
)
|
|
|
|
if (length(unique(key_ab)) == 1) {
|
|
warning_("in `key_antimicrobials()`: no distinct key antibiotics determined.")
|
|
}
|
|
|
|
key_ab
|
|
}
|
|
|
|
#' @rdname key_antimicrobials
|
|
#' @export
|
|
all_antimicrobials <- function(x = NULL,
|
|
only_sir_columns = FALSE,
|
|
...) {
|
|
if (is_null_or_grouped_tbl(x)) {
|
|
# when `x` is left blank, auto determine it (get_current_data() searches underlying data within call)
|
|
# is also fix for using a grouped df as input (a dot as first argument)
|
|
x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x)
|
|
}
|
|
meet_criteria(x, allow_class = "data.frame") # also checks dimensions to be >0
|
|
meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1)
|
|
|
|
# force regular data.frame, not a tibble or data.table
|
|
x <- as.data.frame(x, stringsAsFactors = FALSE)
|
|
cols <- get_column_abx(x,
|
|
only_sir_columns = only_sir_columns, info = FALSE,
|
|
sort = FALSE, fn = "all_antimicrobials"
|
|
)
|
|
|
|
generate_antimcrobials_string(x[, cols, drop = FALSE])
|
|
}
|
|
|
|
generate_antimcrobials_string <- function(df) {
|
|
if (NCOL(df) == 0) {
|
|
return(rep("", NROW(df)))
|
|
}
|
|
if (NROW(df) == 0) {
|
|
return(character(0))
|
|
}
|
|
tryCatch(
|
|
{
|
|
do.call(
|
|
paste0,
|
|
lapply(
|
|
as.list(df),
|
|
function(x) {
|
|
x <- toupper(as.character(x))
|
|
x[x == "SDD"] <- "I"
|
|
# ignore "NI" here, no use for determining first isolates
|
|
x[!x %in% c("S", "I", "R")] <- "."
|
|
paste(x)
|
|
}
|
|
)
|
|
)
|
|
},
|
|
error = function(e) rep(strrep(".", NCOL(df)), NROW(df))
|
|
)
|
|
}
|
|
|
|
#' @rdname key_antimicrobials
|
|
#' @export
|
|
antimicrobials_equal <- function(y,
|
|
z,
|
|
type = c("points", "keyantimicrobials"),
|
|
ignore_I = TRUE,
|
|
points_threshold = 2,
|
|
...) {
|
|
meet_criteria(y, allow_class = "character")
|
|
meet_criteria(z, allow_class = "character")
|
|
stop_if(missing(type), "argument \"type\" is missing, with no default")
|
|
meet_criteria(type, allow_class = "character", has_length = 1, is_in = c("points", "keyantimicrobials"))
|
|
meet_criteria(ignore_I, allow_class = "logical", has_length = 1)
|
|
meet_criteria(points_threshold, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
stop_ifnot(length(y) == length(z), "length of `y` and `z` must be equal")
|
|
|
|
key2sir <- function(val) {
|
|
val <- strsplit(val, "", fixed = TRUE)[[1L]]
|
|
val.int <- rep(NA_real_, length(val))
|
|
val.int[val == "S"] <- 1
|
|
val.int[val %in% c("I", "SDD")] <- 2
|
|
val.int[val == "R"] <- 3
|
|
val.int
|
|
}
|
|
# only run on uniques
|
|
uniq <- unique(c(y, z))
|
|
uniq_list <- lapply(uniq, key2sir)
|
|
names(uniq_list) <- uniq
|
|
|
|
y <- uniq_list[match(y, names(uniq_list))]
|
|
z <- uniq_list[match(z, names(uniq_list))]
|
|
|
|
determine_equality <- function(a, b, type, points_threshold, ignore_I) {
|
|
if (length(a) != length(b)) {
|
|
# incomparable, so not equal
|
|
return(FALSE)
|
|
}
|
|
# ignore NAs on both sides
|
|
NA_ind <- which(is.na(a) | is.na(b))
|
|
a[NA_ind] <- NA_real_
|
|
b[NA_ind] <- NA_real_
|
|
|
|
if (type == "points") {
|
|
# count points for every single character:
|
|
# - no change is 0 points
|
|
# - I <-> S|R is 0.5 point
|
|
# - S|R <-> R|S is 1 point
|
|
# use the levels of as.sir (S = 1, I = 2, R = 3)
|
|
# and divide by 2 (S = 0.5, I = 1, R = 1.5)
|
|
(sum(abs(a - b), na.rm = TRUE) / 2) < points_threshold
|
|
} else {
|
|
if (ignore_I == TRUE) {
|
|
ind <- which(a == 2 | b == 2) # since as.double(as.sir("I")) == 2
|
|
a[ind] <- NA_real_
|
|
b[ind] <- NA_real_
|
|
}
|
|
all(a == b, na.rm = TRUE)
|
|
}
|
|
}
|
|
out <- unlist(Map(
|
|
f = determine_equality,
|
|
y,
|
|
z,
|
|
MoreArgs = list(
|
|
type = type,
|
|
points_threshold = points_threshold,
|
|
ignore_I = ignore_I
|
|
),
|
|
USE.NAMES = FALSE
|
|
))
|
|
out[is.na(y) | is.na(z)] <- NA
|
|
out
|
|
}
|