mirror of https://github.com/msberends/AMR.git
44 lines
2.2 KiB
R
44 lines
2.2 KiB
R
% Generated by roxygen2: do not edit by hand
|
|
% Please edit documentation in R/skewness.R
|
|
\name{skewness}
|
|
\alias{skewness}
|
|
\alias{skewness.default}
|
|
\alias{skewness.matrix}
|
|
\alias{skewness.data.frame}
|
|
\title{Skewness of the Sample}
|
|
\usage{
|
|
skewness(x, na.rm = FALSE)
|
|
|
|
\method{skewness}{default}(x, na.rm = FALSE)
|
|
|
|
\method{skewness}{matrix}(x, na.rm = FALSE)
|
|
|
|
\method{skewness}{data.frame}(x, na.rm = FALSE)
|
|
}
|
|
\arguments{
|
|
\item{x}{a vector of values, a \link{matrix} or a \link{data.frame}}
|
|
|
|
\item{na.rm}{a \link{logical} value indicating whether \code{NA} values should be stripped before the computation proceeds}
|
|
}
|
|
\description{
|
|
Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean.
|
|
|
|
When negative ('left-skewed'): the left tail is longer; the mass of the distribution is concentrated on the right of a histogram. When positive ('right-skewed'): the right tail is longer; the mass of the distribution is concentrated on the left of a histogram. A normal distribution has a skewness of 0.
|
|
}
|
|
\section{Stable Lifecycle}{
|
|
|
|
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:"5"} \cr}
|
|
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
|
|
|
|
If the unlying code needs breaking changes, they will occur gradually. For example, an argument will be deprecated and first continue to work, but will emit a message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
|
|
}
|
|
|
|
\section{Read more on Our Website!}{
|
|
|
|
On our website \url{https://msberends.github.io/AMR/} you can find \href{https://msberends.github.io/AMR/articles/AMR.html}{a comprehensive tutorial} about how to conduct AMR data analysis, the \href{https://msberends.github.io/AMR/reference/}{complete documentation of all functions} and \href{https://msberends.github.io/AMR/articles/WHONET.html}{an example analysis using WHONET data}.
|
|
}
|
|
|
|
\seealso{
|
|
\code{\link[=kurtosis]{kurtosis()}}
|
|
}
|