mirror of
https://github.com/msberends/AMR.git
synced 2024-12-27 06:46:12 +01:00
185 lines
7.5 KiB
R
Executable File
185 lines
7.5 KiB
R
Executable File
# ==================================================================== #
|
|
# TITLE: #
|
|
# AMR: An R Package for Working with Antimicrobial Resistance Data #
|
|
# #
|
|
# SOURCE CODE: #
|
|
# https://github.com/msberends/AMR #
|
|
# #
|
|
# PLEASE CITE THIS SOFTWARE AS: #
|
|
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
|
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
|
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
|
# https://doi.org/10.18637/jss.v104.i03 #
|
|
# #
|
|
# Developed at the University of Groningen and the University Medical #
|
|
# Center Groningen in The Netherlands, in collaboration with many #
|
|
# colleagues from around the world, see our website. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# #
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
|
# ==================================================================== #
|
|
|
|
#' Calculate the Mean AMR Distance
|
|
#'
|
|
#' Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand.
|
|
#' @param x a vector of class [sir][as.sir()], [mic][as.mic()] or [disk][as.disk()], or a [data.frame] containing columns of any of these classes
|
|
#' @param ... variables to select (supports [tidyselect language][tidyselect::language] such as `column1:column4` and `where(is.mic)`, and can thus also be [antibiotic selectors][ab_selector()]
|
|
#' @param combine_SI a [logical] to indicate whether all values of S and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant) - the default is `TRUE`
|
|
#' @details The mean AMR distance is effectively [the Z-score](https://en.wikipedia.org/wiki/Standard_score); a normalised numeric value to compare AMR test results which can help to identify similar isolates, without comparing antibiograms by hand.
|
|
#'
|
|
#' MIC values (see [as.mic()]) are transformed with [log2()] first; their distance is thus calculated as `(log2(x) - mean(log2(x))) / sd(log2(x))`.
|
|
#'
|
|
#' SIR values (see [as.sir()]) are transformed using `"S"` = 1, `"I"` = 2, and `"R"` = 3. If `combine_SI` is `TRUE` (default), the `"I"` will be considered to be 1.
|
|
#'
|
|
#' For data sets, the mean AMR distance will be calculated per column, after which the mean per row will be returned, see *Examples*.
|
|
#'
|
|
#' Use [amr_distance_from_row()] to subtract distances from the distance of one row, see *Examples*.
|
|
#' @section Interpretation:
|
|
#' Isolates with distances less than 0.01 difference from each other should be considered similar. Differences lower than 0.025 should be considered suspicious.
|
|
#' @export
|
|
#' @examples
|
|
#' sir <- random_sir(10)
|
|
#' sir
|
|
#' mean_amr_distance(sir)
|
|
#'
|
|
#' mic <- random_mic(10)
|
|
#' mic
|
|
#' mean_amr_distance(mic)
|
|
#' # equal to the Z-score of their log2:
|
|
#' (log2(mic) - mean(log2(mic))) / sd(log2(mic))
|
|
#'
|
|
#' disk <- random_disk(10)
|
|
#' disk
|
|
#' mean_amr_distance(disk)
|
|
#'
|
|
#' y <- data.frame(
|
|
#' id = LETTERS[1:10],
|
|
#' amox = random_sir(10, ab = "amox", mo = "Escherichia coli"),
|
|
#' cipr = random_disk(10, ab = "cipr", mo = "Escherichia coli"),
|
|
#' gent = random_mic(10, ab = "gent", mo = "Escherichia coli"),
|
|
#' tobr = random_mic(10, ab = "tobr", mo = "Escherichia coli")
|
|
#' )
|
|
#' y
|
|
#' mean_amr_distance(y)
|
|
#' y$amr_distance <- mean_amr_distance(y, where(is.mic))
|
|
#' y[order(y$amr_distance), ]
|
|
#'
|
|
#' if (require("dplyr")) {
|
|
#' y %>%
|
|
#' mutate(
|
|
#' amr_distance = mean_amr_distance(y),
|
|
#' check_id_C = amr_distance_from_row(amr_distance, id == "C")
|
|
#' ) %>%
|
|
#' arrange(check_id_C)
|
|
#' }
|
|
#' if (require("dplyr")) {
|
|
#' # support for groups
|
|
#' example_isolates %>%
|
|
#' filter(mo_genus() == "Enterococcus" & mo_species() != "") %>%
|
|
#' select(mo, TCY, carbapenems()) %>%
|
|
#' group_by(mo) %>%
|
|
#' mutate(dist = mean_amr_distance(.)) %>%
|
|
#' arrange(mo, dist)
|
|
#' }
|
|
mean_amr_distance <- function(x, ...) {
|
|
UseMethod("mean_amr_distance")
|
|
}
|
|
|
|
#' @noRd
|
|
#' @export
|
|
mean_amr_distance.default <- function(x, ...) {
|
|
x <- as.double(x)
|
|
# calculate z-score
|
|
(x - mean(x, na.rm = TRUE)) / stats::sd(x, na.rm = TRUE)
|
|
}
|
|
|
|
#' @noRd
|
|
#' @export
|
|
mean_amr_distance.mic <- function(x, ...) {
|
|
mean_amr_distance(log2(x))
|
|
}
|
|
|
|
#' @noRd
|
|
#' @export
|
|
mean_amr_distance.disk <- function(x, ...) {
|
|
mean_amr_distance(as.double(x))
|
|
}
|
|
|
|
#' @rdname mean_amr_distance
|
|
#' @export
|
|
mean_amr_distance.sir <- function(x, ..., combine_SI = TRUE) {
|
|
meet_criteria(combine_SI, allow_class = "logical", has_length = 1, .call_depth = -1)
|
|
if (isTRUE(combine_SI)) {
|
|
x[x == "I"] <- "S"
|
|
}
|
|
mean_amr_distance(as.double(x))
|
|
}
|
|
|
|
#' @rdname mean_amr_distance
|
|
#' @export
|
|
mean_amr_distance.data.frame <- function(x, ..., combine_SI = TRUE) {
|
|
meet_criteria(combine_SI, allow_class = "logical", has_length = 1, .call_depth = -1)
|
|
df <- x
|
|
if (is_null_or_grouped_tbl(df)) {
|
|
df <- get_current_data("x", -2)
|
|
}
|
|
df <- as.data.frame(df, stringsAsFactors = FALSE)
|
|
if (tryCatch(length(list(...)) > 0, error = function(e) TRUE)) {
|
|
out <- tryCatch(suppressWarnings(c(...)), error = function(e) NULL)
|
|
if (!is.null(out)) {
|
|
df <- df[, out, drop = FALSE]
|
|
} else {
|
|
df <- pm_select(df, ...)
|
|
}
|
|
}
|
|
df_classes <- colnames(df)[vapply(FUN.VALUE = logical(1), df, function(x) is.disk(x) | is.mic(x) | is.disk(x), USE.NAMES = FALSE)]
|
|
df_antibiotics <- unname(get_column_abx(df, info = FALSE))
|
|
df <- df[, colnames(df)[colnames(df) %in% union(df_classes, df_antibiotics)], drop = FALSE]
|
|
|
|
stop_if(ncol(df) < 2,
|
|
"data set must contain at least two variables",
|
|
call = -2
|
|
)
|
|
if (message_not_thrown_before("mean_amr_distance", "groups")) {
|
|
message_("Calculating mean AMR distance based on columns ", vector_and(colnames(df), sort = FALSE))
|
|
}
|
|
|
|
res <- vapply(
|
|
FUN.VALUE = double(nrow(df)),
|
|
df,
|
|
mean_amr_distance,
|
|
combine_SI = combine_SI
|
|
)
|
|
if (is.null(dim(res))) {
|
|
if (all(is.na(res))) {
|
|
return(NA_real_)
|
|
} else {
|
|
return(mean(res, na.rm = TRUE))
|
|
}
|
|
}
|
|
res <- rowMeans(res, na.rm = TRUE)
|
|
res[is.infinite(res) | is.nan(res)] <- 0
|
|
res
|
|
}
|
|
|
|
#' @rdname mean_amr_distance
|
|
#' @param amr_distance the outcome of [mean_amr_distance()]
|
|
#' @param row an index, such as a row number
|
|
#' @export
|
|
amr_distance_from_row <- function(amr_distance, row) {
|
|
meet_criteria(amr_distance, allow_class = "numeric", is_finite = TRUE)
|
|
meet_criteria(row, allow_class = c("logical", "numeric", "integer"))
|
|
if (is.logical(row)) {
|
|
row <- which(row)
|
|
}
|
|
abs(amr_distance[row] - amr_distance)
|
|
}
|