mirror of
				https://github.com/msberends/AMR.git
				synced 2025-11-04 15:35:28 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			714 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
			
		
		
	
	
			714 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
# ==================================================================== #
 | 
						||
# TITLE                                                                #
 | 
						||
# Antimicrobial Resistance (AMR) Analysis                              #
 | 
						||
#                                                                      #
 | 
						||
# AUTHORS                                                              #
 | 
						||
# Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl)           #
 | 
						||
#                                                                      #
 | 
						||
# LICENCE                                                              #
 | 
						||
# This program is free software; you can redistribute it and/or modify #
 | 
						||
# it under the terms of the GNU General Public License version 2.0,    #
 | 
						||
# as published by the Free Software Foundation.                        #
 | 
						||
#                                                                      #
 | 
						||
# This program is distributed in the hope that it will be useful,      #
 | 
						||
# but WITHOUT ANY WARRANTY; without even the implied warranty of       #
 | 
						||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the        #
 | 
						||
# GNU General Public License for more details.                         #
 | 
						||
# ==================================================================== #
 | 
						||
 | 
						||
#' Transform to microorganism ID
 | 
						||
#'
 | 
						||
#' Use this function to determine a valid microorganism ID (\code{mo}). Determination is done using Artificial Intelligence (AI) and the complete taxonomic kingdoms \emph{Bacteria}, \emph{Fungi} and \emph{Protozoa} (see Source), so the input can be almost anything: a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), an abbreviation known in the field (like \code{"MRSA"}), or just a genus. You could also \code{\link{select}} a genus and species column, zie Examples.
 | 
						||
#' @param x a character vector or a \code{data.frame} with one or two columns
 | 
						||
#' @param Becker a logical to indicate whether \emph{Staphylococci} should be categorised into Coagulase Negative \emph{Staphylococci} ("CoNS") and Coagulase Positive \emph{Staphylococci} ("CoPS") instead of their own species, according to Karsten Becker \emph{et al.} [1].
 | 
						||
#'
 | 
						||
#'   This excludes \emph{Staphylococcus aureus} at default, use \code{Becker = "all"} to also categorise \emph{S. aureus} as "CoPS".
 | 
						||
#' @param Lancefield a logical to indicate whether beta-haemolytic \emph{Streptococci} should be categorised into Lancefield groups instead of their own species, according to Rebecca C. Lancefield [2]. These \emph{Streptococci} will be categorised in their first group, e.g. \emph{Streptococcus dysgalactiae} will be group C, although officially it was also categorised into groups G and L.
 | 
						||
#'
 | 
						||
#'   This excludes \emph{Enterococci} at default (who are in group D), use \code{Lancefield = "all"} to also categorise all \emph{Enterococci} as group D.
 | 
						||
#' @param allow_uncertain a logical to indicate whether empty results should be checked for only a part of the input string. When results are found, a warning will be given about the uncertainty and the result.
 | 
						||
#' @param reference_df a \code{data.frame} to use for extra reference when translating \code{x} to a valid \code{mo}. The first column can be any microbial name, code or ID (used in your analysis or organisation), the second column must be a valid \code{mo} as found in the \code{\link{microorganisms}} data set.
 | 
						||
#' @rdname as.mo
 | 
						||
#' @aliases mo
 | 
						||
#' @keywords mo Becker becker Lancefield lancefield guess
 | 
						||
#' @details
 | 
						||
#' A microbial ID from this package (class: \code{mo}) typically looks like these examples:\cr
 | 
						||
#' \preformatted{
 | 
						||
#'   Code                Full name
 | 
						||
#'   ---------------     --------------------------------------
 | 
						||
#'   B_KLBSL             Klebsiella
 | 
						||
#'   B_KLBSL_PNE         Klebsiella pneumoniae
 | 
						||
#'   B_KLBSL_PNE_RHI     Klebsiella pneumoniae rhinoscleromatis
 | 
						||
#'   |   |    |   |
 | 
						||
#'   |   |    |   |
 | 
						||
#'   |   |    |    ----> subspecies, a 3-4 letter acronym
 | 
						||
#'   |   |     ----> species, a 3-4 letter acronym
 | 
						||
#'   |    ----> genus, a 5-7 letter acronym, mostly without vowels
 | 
						||
#'    ----> taxonomic kingdom, either B (Bacteria), F (Fungi) or P (Protozoa)
 | 
						||
#' }
 | 
						||
#'
 | 
						||
#' Use the \code{\link{mo_property}} functions to get properties based on the returned code, see Examples.
 | 
						||
#'
 | 
						||
#' This function uses Artificial Intelligence (AI) to help getting fast and logical results. It tries to find matches in this order:
 | 
						||
#' \itemize{
 | 
						||
#'   \item{Taxonomic kingdom: it first searches in bacteria, then fungi, then protozoa}
 | 
						||
#'   \item{Human pathogenic prevalence: it first searches in more prevalent microorganisms, then less prevalent ones}
 | 
						||
#'   \item{Valid MO codes and full names: it first searches in already valid MO code and genus/species combinations}
 | 
						||
#'   \item{Breakdown of input values: from here it starts to breakdown input values to find possible matches}
 | 
						||
#' }
 | 
						||
#'
 | 
						||
#' A couple of effects because of these rules
 | 
						||
#' \itemize{
 | 
						||
#'   \item{\code{"E. coli"} will return the ID of \emph{Escherichia coli} and not \emph{Entamoeba coli}, although the latter would alphabetically come first}
 | 
						||
#'   \item{\code{"H. influenzae"} will return the ID of \emph{Haemophilus influenzae} and not \emph{Haematobacter influenzae} for the same reason}
 | 
						||
#'   \item{Something like \code{"p aer"} will return the ID of \emph{Pseudomonas aeruginosa} and not \emph{Pasteurella aerogenes}}
 | 
						||
#'   \item{Something like \code{"stau"} or \code{"S aur"} will return the ID of \emph{Staphylococcus aureus} and not \emph{Staphylococcus auricularis}}
 | 
						||
#' }
 | 
						||
#' This means that looking up human pathogenic microorganisms takes less time than looking up human \strong{non}-pathogenic microorganisms.
 | 
						||
#'
 | 
						||
#' \code{guess_mo} is an alias of \code{as.mo}.
 | 
						||
#' @section ITIS:
 | 
						||
#' \if{html}{\figure{itis_logo.jpg}{options: height=60px style=margin-bottom:5px} \cr}
 | 
						||
#' This package contains the \strong{complete microbial taxonomic data} (with all  seven taxonomic ranks - from subkingdom to subspecies) from the publicly available Integrated Taxonomic Information System (ITIS, \url{https://www.itis.gov}).
 | 
						||
#'
 | 
						||
#' All (sub)species from the \strong{taxonomic kingdoms Bacteria, Fungi and Protozoa are included in this package}, as well as all previously accepted names known to ITIS. Furthermore, the responsible authors and year of publication are available. This \strong{allows users to use authoritative taxonomic information} for their data analysis on any microorganism, not only human pathogens. It also helps to \strong{quickly determine the Gram stain of bacteria}, since all bacteria are classified into subkingdom Negibacteria or Posibacteria.
 | 
						||
#'
 | 
						||
#' ITIS is a partnership of U.S., Canadian, and Mexican agencies and taxonomic specialists [3].
 | 
						||
#'
 | 
						||
#  (source as a section, so it can be inherited by other man pages)
 | 
						||
#' @section Source:
 | 
						||
#' [1] Becker K \emph{et al.} \strong{Coagulase-Negative Staphylococci}. 2014. Clin Microbiol Rev. 27(4): 870–926. \url{https://dx.doi.org/10.1128/CMR.00109-13}
 | 
						||
#'
 | 
						||
#' [2] Lancefield RC \strong{A serological differentiation of human and other groups of hemolytic streptococci}. 1933. J Exp Med. 57(4): 571–95. \url{https://dx.doi.org/10.1084/jem.57.4.571}
 | 
						||
#'
 | 
						||
#' [3] Integrated Taxonomic Information System (ITIS). Retrieved September 2018. \url{http://www.itis.gov}
 | 
						||
#' @export
 | 
						||
#' @return Character (vector) with class \code{"mo"}. Unknown values will return \code{NA}.
 | 
						||
#' @seealso \code{\link{microorganisms}} for the \code{data.frame} with ITIS content that is being used to determine ID's. \cr
 | 
						||
#' The \code{\link{mo_property}} functions (like \code{\link{mo_genus}}, \code{\link{mo_gramstain}}) to get properties based on the returned code.
 | 
						||
#' @examples
 | 
						||
#' # These examples all return "B_STPHY_AUR", the ID of S. aureus:
 | 
						||
#' as.mo("stau")
 | 
						||
#' as.mo("STAU")
 | 
						||
#' as.mo("staaur")
 | 
						||
#' as.mo("S. aureus")
 | 
						||
#' as.mo("S aureus")
 | 
						||
#' as.mo("Staphylococcus aureus")
 | 
						||
#' as.mo("MRSA") # Methicillin Resistant S. aureus
 | 
						||
#' as.mo("VISA") # Vancomycin Intermediate S. aureus
 | 
						||
#' as.mo("VRSA") # Vancomycin Resistant S. aureus
 | 
						||
#' as.mo(369)    # Search on TSN (Taxonomic Serial Number), a unique identifier
 | 
						||
#'               # for the Integrated Taxonomic Information System (ITIS)
 | 
						||
#'
 | 
						||
#' as.mo("Streptococcus group A")
 | 
						||
#' as.mo("GAS") # Group A Streptococci
 | 
						||
#' as.mo("GBS") # Group B Streptococci
 | 
						||
#'
 | 
						||
#' # guess_mo is an alias of as.mo and works the same
 | 
						||
#' guess_mo("S. epidermidis")                 # will remain species: B_STPHY_EPI
 | 
						||
#' guess_mo("S. epidermidis", Becker = TRUE)  # will not remain species: B_STPHY_CNS
 | 
						||
#'
 | 
						||
#' guess_mo("S. pyogenes")                    # will remain species: B_STRPTC_PYO
 | 
						||
#' guess_mo("S. pyogenes", Lancefield = TRUE) # will not remain species: B_STRPTC_GRA
 | 
						||
#'
 | 
						||
#' # Use mo_* functions to get a specific property based on `mo`
 | 
						||
#' Ecoli <- as.mo("E. coli")     # returns `B_ESCHR_COL`
 | 
						||
#' mo_genus(Ecoli)               # returns "Escherichia"
 | 
						||
#' mo_gramstain(Ecoli)           # returns "Gram negative"
 | 
						||
#' # but it uses as.mo internally too, so you could also just use:
 | 
						||
#' mo_genus("E. coli")           # returns "Escherichia"
 | 
						||
#'
 | 
						||
#'
 | 
						||
#' \dontrun{
 | 
						||
#' df$mo <- as.mo(df$microorganism_name)
 | 
						||
#'
 | 
						||
#' # the select function of tidyverse is also supported:
 | 
						||
#' library(dplyr)
 | 
						||
#' df$mo <- df %>%
 | 
						||
#'   select(microorganism_name) %>%
 | 
						||
#'   guess_mo()
 | 
						||
#'
 | 
						||
#' # and can even contain 2 columns, which is convenient for genus/species combinations:
 | 
						||
#' df$mo <- df %>%
 | 
						||
#'   select(genus, species) %>%
 | 
						||
#'   guess_mo()
 | 
						||
#'
 | 
						||
#' # same result:
 | 
						||
#' df <- df %>%
 | 
						||
#'   mutate(mo = guess_mo(paste(genus, species)))
 | 
						||
#' }
 | 
						||
as.mo <- function(x, Becker = FALSE, Lancefield = FALSE, allow_uncertain = FALSE, reference_df = NULL) {
 | 
						||
  structure(mo_validate(x = x, property = "mo",
 | 
						||
                        Becker = Becker, Lancefield = Lancefield,
 | 
						||
                        allow_uncertain = allow_uncertain, reference_df = reference_df),
 | 
						||
            class = "mo")
 | 
						||
}
 | 
						||
 | 
						||
#' @rdname as.mo
 | 
						||
#' @export
 | 
						||
is.mo <- function(x) {
 | 
						||
  # bactid for older releases
 | 
						||
  # remove when is.bactid will be removed
 | 
						||
  identical(class(x), "mo") | identical(class(x), "bactid")
 | 
						||
}
 | 
						||
 | 
						||
#' @rdname as.mo
 | 
						||
#' @export
 | 
						||
guess_mo <- as.mo
 | 
						||
 | 
						||
#' @importFrom dplyr %>% pull left_join
 | 
						||
#' @importFrom data.table data.table as.data.table setkey
 | 
						||
exec_as.mo <- function(x, Becker = FALSE, Lancefield = FALSE, allow_uncertain = FALSE, reference_df = NULL, property = "mo") {
 | 
						||
 | 
						||
  # These data.tables are available as data sets when the AMR package is loaded:
 | 
						||
  #   microorganismsDT        # this one is sorted by kingdom (B<F<P), prevalence, TSN
 | 
						||
  #   microorganisms.prevDT   # same as microorganismsDT, but with prevalence != 9999
 | 
						||
  #   microorganisms.unprevDT # same as microorganismsDT, but with prevalence == 9999
 | 
						||
  #   microorganisms.oldDT    # old taxonomic names, sorted by name (genus+species), TSN
 | 
						||
 | 
						||
  if (NCOL(x) == 2) {
 | 
						||
    # support tidyverse selection like: df %>% select(colA, colB)
 | 
						||
    # paste these columns together
 | 
						||
    x_vector <- vector("character", NROW(x))
 | 
						||
    for (i in 1:NROW(x)) {
 | 
						||
      x_vector[i] <- paste(pull(x[i,], 1), pull(x[i,], 2), sep = " ")
 | 
						||
    }
 | 
						||
    x <- x_vector
 | 
						||
  } else {
 | 
						||
    if (NCOL(x) > 2) {
 | 
						||
      stop('`x` can be 2 columns at most', call. = FALSE)
 | 
						||
    }
 | 
						||
    x[is.null(x)] <- NA
 | 
						||
 | 
						||
    # support tidyverse selection like: df %>% select(colA)
 | 
						||
    if (!is.vector(x)) {
 | 
						||
      x <- pull(x, 1)
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  failures <- character(0)
 | 
						||
  x_input <- x
 | 
						||
  # only check the uniques, which is way faster
 | 
						||
  x <- unique(x)
 | 
						||
  # remove empty values (to later fill them in again)
 | 
						||
  x <- x[!is.na(x) & !is.null(x) & !identical(x, "")]
 | 
						||
 | 
						||
  # defined df to check for
 | 
						||
  if (!is.null(reference_df)) {
 | 
						||
    if (!is.data.frame(reference_df) | NCOL(reference_df) < 2) {
 | 
						||
      stop('`reference_df` must be a data.frame with at least two columns.', call. = FALSE)
 | 
						||
    }
 | 
						||
    # remove factors, just keep characters
 | 
						||
    suppressWarnings(
 | 
						||
      reference_df[] <- lapply(reference_df, as.character)
 | 
						||
    )
 | 
						||
  }
 | 
						||
 | 
						||
  if (all(x %in% microorganismsDT[["mo"]])) {
 | 
						||
    # existing mo codes when not looking for property "mo", like mo_genus("B_ESCHR_COL")
 | 
						||
    x <- microorganismsDT[data.table(mo = x), on = "mo", ..property][[1]]
 | 
						||
  } else if (!is.null(reference_df)
 | 
						||
             & all(x %in% reference_df[, 1])
 | 
						||
             & all(reference_df[, 2] %in% microorganismsDT[["mo"]])) {
 | 
						||
    # manually defined reference
 | 
						||
    colnames(reference_df)[1] <- "x"
 | 
						||
    colnames(reference_df)[2] <- "mo"
 | 
						||
    suppressWarnings(
 | 
						||
      x <- data.frame(x = x, stringsAsFactors = FALSE) %>%
 | 
						||
        left_join(reference_df, by = "x") %>%
 | 
						||
        left_join(AMR::microorganisms, by = "mo") %>%
 | 
						||
        pull(property)
 | 
						||
    )
 | 
						||
  } else if (all(toupper(x) %in% AMR::microorganisms.certe[, "certe"])) {
 | 
						||
    # old Certe codes
 | 
						||
    y <- as.data.table(AMR::microorganisms.certe)[data.table(certe = toupper(x)), on = "certe", ]
 | 
						||
    x <- microorganismsDT[data.table(mo = y[["mo"]]), on = "mo", ..property][[1]]
 | 
						||
 | 
						||
  } else if (!all(x %in% microorganismsDT[[property]])) {
 | 
						||
 | 
						||
    x_backup <- trimws(x, which = "both")
 | 
						||
    x_species <- paste(x_backup, "species")
 | 
						||
    # translate to English for supported languages of mo_property
 | 
						||
    x <- gsub("(Gruppe|gruppe|groep|grupo|gruppo|groupe)", "group", x)
 | 
						||
    # remove 'empty' genus and species values
 | 
						||
    x <- gsub("(no MO)", "", x, fixed = TRUE)
 | 
						||
    # remove dots and other non-text in case of "E. coli" except spaces
 | 
						||
    x <- gsub("[^a-zA-Z0-9/ \\-]+", "", x)
 | 
						||
    # but spaces before and after should be omitted
 | 
						||
    x <- trimws(x, which = "both")
 | 
						||
    x_trimmed <- x
 | 
						||
    x_trimmed_species <- paste(x_trimmed, "species")
 | 
						||
    # replace space by regex sign
 | 
						||
    x_withspaces <- gsub(" ", ".* ", x, fixed = TRUE)
 | 
						||
    x <- gsub(" ", ".*", x, fixed = TRUE)
 | 
						||
    # add start en stop regex
 | 
						||
    x <- paste0('^', x, '$')
 | 
						||
    x_withspaces_start <- paste0('^', x_withspaces)
 | 
						||
    x_withspaces <- paste0('^', x_withspaces, '$')
 | 
						||
 | 
						||
    # cat(paste0('x                  "', x, '"\n'))
 | 
						||
    # cat(paste0('x_species          "', x_species, '"\n'))
 | 
						||
    # cat(paste0('x_withspaces_start "', x_withspaces_start, '"\n'))
 | 
						||
    # cat(paste0('x_withspaces       "', x_withspaces, '"\n'))
 | 
						||
    # cat(paste0('x_backup           "', x_backup, '"\n'))
 | 
						||
    # cat(paste0('x_trimmed          "', x_trimmed, '"\n'))
 | 
						||
    # cat(paste0('x_trimmed_species  "', x_trimmed_species, '"\n'))
 | 
						||
 | 
						||
    for (i in 1:length(x)) {
 | 
						||
      if (identical(x_trimmed[i], "")) {
 | 
						||
        # empty values
 | 
						||
        x[i] <- NA_character_
 | 
						||
        next
 | 
						||
      }
 | 
						||
      if (nchar(x_trimmed[i]) < 3) {
 | 
						||
        # fewer than 3 chars, add as failure
 | 
						||
        x[i] <- NA_character_
 | 
						||
        failures <- c(failures, x_backup[i])
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # translate known trivial abbreviations to genus + species ----
 | 
						||
      if (!is.na(x_trimmed[i])) {
 | 
						||
        if (toupper(x_trimmed[i]) == 'MRSA'
 | 
						||
            | toupper(x_trimmed[i]) == 'MSSA'
 | 
						||
            | toupper(x_trimmed[i]) == 'VISA'
 | 
						||
            | toupper(x_trimmed[i]) == 'VRSA') {
 | 
						||
          x[i] <- microorganismsDT[mo == 'B_STPHY_AUR', ..property][[1]][1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
        if (toupper(x_trimmed[i]) == 'MRSE'
 | 
						||
            | toupper(x_trimmed[i]) == 'MSSE') {
 | 
						||
          x[i] <- microorganismsDT[mo == 'B_STPHY_EPI', ..property][[1]][1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
        if (toupper(x_trimmed[i]) == 'VRE') {
 | 
						||
          x[i] <- microorganismsDT[mo == 'B_ENTRC', ..property][[1]][1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
        if (toupper(x_trimmed[i]) == 'MRPA') {
 | 
						||
          # multi resistant P. aeruginosa
 | 
						||
          x[i] <- microorganismsDT[mo == 'B_PDMNS_AER', ..property][[1]][1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
        if (toupper(x_trimmed[i]) == 'CRS'
 | 
						||
            | toupper(x_trimmed[i]) == 'CRSM') {
 | 
						||
          # co-trim resistant S. maltophilia
 | 
						||
          x[i] <- microorganismsDT[mo == 'B_STNTR_MAL', ..property][[1]][1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
        if (toupper(x_trimmed[i]) %in% c('PISP', 'PRSP', 'VISP', 'VRSP')) {
 | 
						||
          # peni I, peni R, vanco I, vanco R: S. pneumoniae
 | 
						||
          x[i] <- microorganismsDT[mo == 'B_STRPTC_PNE', ..property][[1]][1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
        if (toupper(x_trimmed[i]) %like% '^G[ABCDFGHK]S$') {
 | 
						||
          x[i] <- microorganismsDT[mo == gsub("G([ABCDFGHK])S", "B_STRPTC_GR\\1", x_trimmed[i]), ..property][[1]][1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
        # CoNS/CoPS in different languages (support for German, Dutch, Spanish, Portuguese) ----
 | 
						||
        if (tolower(x[i]) %like% '[ck]oagulas[ea] negatie?[vf]'
 | 
						||
            | tolower(x_trimmed[i]) %like% '[ck]oagulas[ea] negatie?[vf]'
 | 
						||
            | tolower(x[i]) %like% '[ck]o?ns[^a-z]?$') {
 | 
						||
          # coerce S. coagulase negative
 | 
						||
          x[i] <- microorganismsDT[mo == 'B_STPHY_CNS', ..property][[1]][1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
        if (tolower(x[i]) %like% '[ck]oagulas[ea] positie?[vf]'
 | 
						||
            | tolower(x_trimmed[i]) %like% '[ck]oagulas[ea] positie?[vf]'
 | 
						||
            | tolower(x[i]) %like% '[ck]o?ps[^a-z]?$') {
 | 
						||
          # coerce S. coagulase positive
 | 
						||
          x[i] <- microorganismsDT[mo == 'B_STPHY_CPS', ..property][[1]][1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      # FIRST TRY FULLNAMES AND CODES
 | 
						||
      # if only genus is available, return only genus
 | 
						||
      if (all(!c(x[i], x_trimmed[i]) %like% " ")) {
 | 
						||
        found <- microorganismsDT[tolower(fullname) %in% tolower(c(x_species[i], x_trimmed_species[i])), ..property][[1]]
 | 
						||
        if (length(found) > 0) {
 | 
						||
          x[i] <- found[1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
        if (nchar(x_trimmed[i]) > 4) {
 | 
						||
          # not when abbr is esco, stau, klpn, etc.
 | 
						||
          found <- microorganismsDT[tolower(fullname) %like% gsub(" ", ".*", x_trimmed_species[i], fixed = TRUE), ..property][[1]]
 | 
						||
          if (length(found) > 0) {
 | 
						||
            x[i] <- found[1L]
 | 
						||
            next
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      # TRY OTHER SOURCES ----
 | 
						||
      if (x_backup[i] %in% AMR::microorganisms.certe$certe) {
 | 
						||
        x[i] <- microorganismsDT[mo == AMR::microorganisms.certe[AMR::microorganisms.certe[, 1] == x_backup[i], 2], ..property][[1]][1L]
 | 
						||
        # x[i] <- exec_as.mo(x = AMR::microorganisms.certe[AMR::microorganisms.certe$certe == x_backup[i], "mo"],
 | 
						||
        #                    property = property)
 | 
						||
        # next
 | 
						||
      }
 | 
						||
      if (x_backup[i] %in% AMR::microorganisms.umcg[, 1]) {
 | 
						||
        ref_certe <- AMR::microorganisms.umcg[AMR::microorganisms.umcg[, 1] == x_backup[i], 2]
 | 
						||
        ref_mo <- AMR::microorganisms.certe[AMR::microorganisms.certe[, 1] == ref_certe, 2]
 | 
						||
        x[i] <- microorganismsDT[mo == ref_mo, ..property][[1]][1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
      if (x_backup[i] %in% reference_df[, 1]) {
 | 
						||
        ref_mo <- reference_df[reference_df[, 1] == x_backup[i], 2]
 | 
						||
        if (ref_mo %in% microorganismsDT[, mo]) {
 | 
						||
          x[i] <- microorganismsDT[mo == ref_mo, ..property][[1]][1L]
 | 
						||
          next
 | 
						||
        } else {
 | 
						||
          warning("Value '", x_backup[i], "' was found in reference_df, but '", ref_mo, "' is not a valid MO code.", call. = FALSE)
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      # TRY FIRST THOUSAND MOST PREVALENT IN HUMAN INFECTIONS ----
 | 
						||
      found <- microorganisms.prevDT[tolower(fullname) %in% tolower(c(x_backup[i], x_trimmed[i])), ..property][[1]]
 | 
						||
      # most probable: is exact match in fullname
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
      found <- microorganisms.prevDT[tsn == x_trimmed[i], ..property][[1]]
 | 
						||
      # is a valid TSN
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
      found <- microorganisms.prevDT[mo == toupper(x_backup[i]), ..property][[1]]
 | 
						||
      # is a valid mo
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # try any match keeping spaces ----
 | 
						||
      found <- microorganisms.prevDT[fullname %like% x_withspaces[i], ..property][[1]]
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # try any match keeping spaces, not ending with $ ----
 | 
						||
      found <- microorganisms.prevDT[fullname %like% x_withspaces_start[i], ..property][[1]]
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # try any match diregarding spaces ----
 | 
						||
      found <- microorganisms.prevDT[fullname %like% x[i], ..property][[1]]
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # try fullname without start and stop regex, to also find subspecies ----
 | 
						||
      # like "K. pneu rhino" -> "Klebsiella pneumoniae (rhinoscleromatis)" = KLEPNERH
 | 
						||
      found <- microorganisms.prevDT[fullname %like% x_withspaces_start[i], ..property][[1]]
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # try splitting of characters in the middle and then find ID ----
 | 
						||
      # only when text length is 6 or lower
 | 
						||
      # like esco = E. coli, klpn = K. pneumoniae, stau = S. aureus, staaur = S. aureus
 | 
						||
      if (nchar(x_trimmed[i]) <= 6) {
 | 
						||
        x_split <- x
 | 
						||
        x_length <- nchar(x_trimmed[i])
 | 
						||
        x_split[i] <- paste0(x_trimmed[i] %>% substr(1, x_length / 2) %>% trimws(),
 | 
						||
                             '.* ',
 | 
						||
                             x_trimmed[i] %>% substr((x_length / 2) + 1, x_length) %>% trimws())
 | 
						||
        found <- microorganisms.prevDT[fullname %like% paste0('^', x_split[i]), ..property][[1]]
 | 
						||
        if (length(found) > 0) {
 | 
						||
          x[i] <- found[1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      # try any match with text before and after original search string ----
 | 
						||
      # so "negative rods" will be "GNR"
 | 
						||
      # if (x_trimmed[i] %like% "^Gram") {
 | 
						||
      #   x_trimmed[i] <- gsub("^Gram", "", x_trimmed[i], ignore.case = TRUE)
 | 
						||
      #   # remove leading and trailing spaces again
 | 
						||
      #   x_trimmed[i] <- trimws(x_trimmed[i], which = "both")
 | 
						||
      # }
 | 
						||
      # if (!is.na(x_trimmed[i])) {
 | 
						||
      #   found <- microorganisms.prevDT[fullname %like% x_trimmed[i], ..property][[1]]
 | 
						||
      #   if (length(found) > 0) {
 | 
						||
      #     x[i] <- found[1L]
 | 
						||
      #     next
 | 
						||
      #   }
 | 
						||
      # }
 | 
						||
 | 
						||
      # THEN TRY ALL OTHERS ----
 | 
						||
      found <- microorganisms.unprevDT[tolower(fullname) == tolower(x_backup[i]), ..property][[1]]
 | 
						||
      # most probable: is exact match in fullname
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
      found <- microorganisms.unprevDT[tolower(fullname) == tolower(x_trimmed[i]), ..property][[1]]
 | 
						||
      # most probable: is exact match in fullname
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
      found <- microorganisms.unprevDT[tsn == x_trimmed[i], ..property][[1]]
 | 
						||
      # is a valid TSN
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
      found <- microorganisms.unprevDT[mo == toupper(x_backup[i]), ..property][[1]]
 | 
						||
      # is a valid mo
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # try any match keeping spaces ----
 | 
						||
      found <- microorganisms.unprevDT[fullname %like% x_withspaces[i], ..property][[1]]
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # try any match keeping spaces, not ending with $ ----
 | 
						||
      found <- microorganisms.unprevDT[fullname %like% x_withspaces_start[i], ..property][[1]]
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # try any match diregarding spaces ----
 | 
						||
      found <- microorganisms.unprevDT[fullname %like% x[i], ..property][[1]]
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # try fullname without start and stop regex, to also find subspecies ----
 | 
						||
      # like "K. pneu rhino" -> "Klebsiella pneumoniae (rhinoscleromatis)" = KLEPNERH
 | 
						||
      found <- microorganisms.unprevDT[fullname %like% x_withspaces_start[i], ..property][[1]]
 | 
						||
      if (length(found) > 0) {
 | 
						||
        x[i] <- found[1L]
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # try splitting of characters in the middle and then find ID ----
 | 
						||
      # only when text length is 6 or lower
 | 
						||
      # like esco = E. coli, klpn = K. pneumoniae, stau = S. aureus, staaur = S. aureus
 | 
						||
      if (nchar(x_trimmed[i]) <= 6) {
 | 
						||
        x_split <- x
 | 
						||
        x_length <- nchar(x_trimmed[i])
 | 
						||
        x_split[i] <- paste0(x_trimmed[i] %>% substr(1, x_length / 2) %>% trimws(),
 | 
						||
                             '.* ',
 | 
						||
                             x_trimmed[i] %>% substr((x_length / 2) + 1, x_length) %>% trimws())
 | 
						||
        found <- microorganisms.unprevDT[fullname %like% paste0('^', x_split[i]), ..property][[1]]
 | 
						||
        if (length(found) > 0) {
 | 
						||
          x[i] <- found[1L]
 | 
						||
          next
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      # # try any match with text before and after original search string ----
 | 
						||
      # # so "negative rods" will be "GNR"
 | 
						||
      # if (x_trimmed[i] %like% "^Gram") {
 | 
						||
      #   x_trimmed[i] <- gsub("^Gram", "", x_trimmed[i], ignore.case = TRUE)
 | 
						||
      #   # remove leading and trailing spaces again
 | 
						||
      #   x_trimmed[i] <- trimws(x_trimmed[i], which = "both")
 | 
						||
      # }
 | 
						||
      # if (!is.na(x_trimmed[i])) {
 | 
						||
      #   found <- microorganisms.unprevDT[fullname %like% x_trimmed[i], ..property][[1]]
 | 
						||
      #   if (length(found) > 0) {
 | 
						||
      #     x[i] <- found[1L]
 | 
						||
      #     next
 | 
						||
      #   }
 | 
						||
      # }
 | 
						||
 | 
						||
      # MISCELLANEOUS ----
 | 
						||
 | 
						||
      # look for old taxonomic names ----
 | 
						||
      found <- microorganisms.oldDT[tolower(name) == tolower(x_backup[i])
 | 
						||
                                    | tsn == x_trimmed[i]
 | 
						||
                                    | name %like% x_withspaces[i],]
 | 
						||
      if (NROW(found) > 0) {
 | 
						||
        x[i] <- microorganismsDT[tsn == found[1, tsn_new], ..property][[1]]
 | 
						||
        renamed_note(name_old = found[1, name],
 | 
						||
                     name_new = microorganismsDT[tsn == found[1, tsn_new], fullname],
 | 
						||
                     ref_old = found[1, ref],
 | 
						||
                     ref_new = microorganismsDT[tsn == found[1, tsn_new], ref])
 | 
						||
        next
 | 
						||
      }
 | 
						||
 | 
						||
      # check for uncertain results ----
 | 
						||
      if (allow_uncertain == TRUE) {
 | 
						||
        # (1) look again for old taxonomic names, now for G. species ----
 | 
						||
        found <- microorganisms.oldDT[name %like% x_withspaces[i]
 | 
						||
                                      | name %like% x_withspaces_start[i]
 | 
						||
                                      | name %like% x[i],]
 | 
						||
        if (NROW(found) > 0) {
 | 
						||
          x[i] <- microorganismsDT[tsn == found[1, tsn_new], ..property][[1]]
 | 
						||
          warning("Uncertain interpretation: '",
 | 
						||
                  x_backup[i], "' -> '", found[1, name], "'",
 | 
						||
                  call. = FALSE, immediate. = TRUE)
 | 
						||
          renamed_note(name_old = found[1, name],
 | 
						||
                       name_new = microorganismsDT[tsn == found[1, tsn_new], fullname],
 | 
						||
                       ref_old = found[1, ref],
 | 
						||
                       ref_new = microorganismsDT[tsn == found[1, tsn_new], ref])
 | 
						||
          next
 | 
						||
        }
 | 
						||
 | 
						||
        # (2) try to strip off one element and check the remains
 | 
						||
        x_strip <- x_backup[i] %>% strsplit(" ") %>% unlist()
 | 
						||
        x_strip <- x_strip[1:length(x_strip) - 1]
 | 
						||
        x[i] <- suppressWarnings(suppressMessages(as.mo(x_strip)))
 | 
						||
        if (!is.na(x[i])) {
 | 
						||
          warning("Uncertain interpretation: '",
 | 
						||
                  x_backup[i], "' -> '", microorganismsDT[mo == x[i], fullname], "' (", x[i], ")",
 | 
						||
                  call. = FALSE, immediate. = TRUE)
 | 
						||
          next
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      # not found ----
 | 
						||
      x[i] <- NA_character_
 | 
						||
      failures <- c(failures, x_backup[i])
 | 
						||
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  failures <- failures[!failures %in% c(NA, NULL, NaN)]
 | 
						||
  if (length(failures) > 0) {
 | 
						||
    warning("These ", length(failures) , " values could not be coerced: ",
 | 
						||
            paste('"', unique(failures), '"', sep = "", collapse = ', '),
 | 
						||
            ".",
 | 
						||
            call. = FALSE)
 | 
						||
  }
 | 
						||
 | 
						||
  # Becker ----
 | 
						||
  if (Becker == TRUE | Becker == "all") {
 | 
						||
    # See Source. It's this figure:
 | 
						||
    # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187637/figure/F3/
 | 
						||
    MOs_staph <- microorganismsDT[genus == "Staphylococcus"]
 | 
						||
    setkey(MOs_staph, species)
 | 
						||
    CoNS <- MOs_staph[species %in% c("arlettae", "auricularis", "capitis",
 | 
						||
                                     "caprae", "carnosus", "cohnii", "condimenti",
 | 
						||
                                     "devriesei", "epidermidis", "equorum",
 | 
						||
                                     "fleurettii", "gallinarum", "haemolyticus",
 | 
						||
                                     "hominis", "jettensis", "kloosii", "lentus",
 | 
						||
                                     "lugdunensis", "massiliensis", "microti",
 | 
						||
                                     "muscae", "nepalensis", "pasteuri", "petrasii",
 | 
						||
                                     "pettenkoferi", "piscifermentans", "rostri",
 | 
						||
                                     "saccharolyticus", "saprophyticus", "sciuri",
 | 
						||
                                     "stepanovicii", "simulans", "succinus",
 | 
						||
                                     "vitulinus", "warneri", "xylosus"), ..property][[1]]
 | 
						||
    CoPS <- MOs_staph[species %in% c("simiae", "agnetis", "chromogenes",
 | 
						||
                                     "delphini", "felis", "lutrae",
 | 
						||
                                     "hyicus", "intermedius",
 | 
						||
                                     "pseudintermedius", "pseudointermedius",
 | 
						||
                                     "schleiferi"), ..property][[1]]
 | 
						||
    x[x %in% CoNS] <- microorganismsDT[mo == 'B_STPHY_CNS', ..property][[1]][1L]
 | 
						||
    x[x %in% CoPS] <- microorganismsDT[mo == 'B_STPHY_CPS', ..property][[1]][1L]
 | 
						||
    if (Becker == "all") {
 | 
						||
      x[x == microorganismsDT[mo == 'B_STPHY_AUR', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STPHY_CPS', ..property][[1]][1L]
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  # Lancefield ----
 | 
						||
  if (Lancefield == TRUE | Lancefield == "all") {
 | 
						||
    # group A - S. pyogenes
 | 
						||
    x[x == microorganismsDT[mo == 'B_STRPTC_PYO', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STRPTC_GRA', ..property][[1]][1L]
 | 
						||
    # group B - S. agalactiae
 | 
						||
    x[x == microorganismsDT[mo == 'B_STRPTC_AGA', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STRPTC_GRB', ..property][[1]][1L]
 | 
						||
    # group C
 | 
						||
    S_groupC <- microorganismsDT %>% filter(genus == "Streptococcus",
 | 
						||
                                            species %in% c("equisimilis", "equi",
 | 
						||
                                                           "zooepidemicus", "dysgalactiae")) %>%
 | 
						||
      pull(property)
 | 
						||
    x[x %in% S_groupC] <- microorganismsDT[mo == 'B_STRPTC_GRC', ..property][[1]][1L]
 | 
						||
    if (Lancefield == "all") {
 | 
						||
      # all Enterococci
 | 
						||
      x[x %like% "^(Enterococcus|B_ENTRC)"] <- microorganismsDT[mo == 'B_STRPTC_GRD', ..property][[1]][1L]
 | 
						||
    }
 | 
						||
    # group F - S. anginosus
 | 
						||
    x[x == microorganismsDT[mo == 'B_STRPTC_ANG', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STRPTC_GRF', ..property][[1]][1L]
 | 
						||
    # group H - S. sanguinis
 | 
						||
    x[x == microorganismsDT[mo == 'B_STRPTC_SAN', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STRPTC_GRH', ..property][[1]][1L]
 | 
						||
    # group K - S. salivarius
 | 
						||
    x[x == microorganismsDT[mo == 'B_STRPTC_SAL', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STRPTC_GRK', ..property][[1]][1L]
 | 
						||
  }
 | 
						||
 | 
						||
  # comply to x, which is also unique and without empty values
 | 
						||
  x_input_unique_nonempty <- unique(x_input[!is.na(x_input) & !is.null(x_input) & !identical(x_input, "")])
 | 
						||
 | 
						||
  # left join the found results to the original input values (x_input)
 | 
						||
  df_found <- data.frame(input = as.character(x_input_unique_nonempty),
 | 
						||
                         found = as.character(x),
 | 
						||
                         stringsAsFactors = FALSE)
 | 
						||
  df_input <- data.frame(input = as.character(x_input),
 | 
						||
                         stringsAsFactors = FALSE)
 | 
						||
  x <- df_input %>%
 | 
						||
    left_join(df_found,
 | 
						||
              by = "input") %>%
 | 
						||
    pull(found)
 | 
						||
 | 
						||
  if (property == "mo") {
 | 
						||
    class(x) <- "mo"
 | 
						||
  } else if (property == "tsn") {
 | 
						||
    x <- as.integer(x)
 | 
						||
  }
 | 
						||
 | 
						||
  x
 | 
						||
}
 | 
						||
 | 
						||
renamed_note <- function(name_old, name_new, ref_old = "", ref_new = "") {
 | 
						||
  if (!is.na(ref_old)) {
 | 
						||
    ref_old <- paste0(" (", ref_old, ")")
 | 
						||
  } else {
 | 
						||
    ref_old <- ""
 | 
						||
  }
 | 
						||
  if (!is.na(ref_new)) {
 | 
						||
    ref_new <- paste0(" (", ref_new, ")")
 | 
						||
  } else {
 | 
						||
    ref_new <- ""
 | 
						||
  }
 | 
						||
  base::message(paste0("Note: '", name_old, "'", ref_old, " was renamed '", name_new, "'", ref_new))
 | 
						||
}
 | 
						||
 | 
						||
#' @exportMethod print.mo
 | 
						||
#' @export
 | 
						||
#' @noRd
 | 
						||
print.mo <- function(x, ...) {
 | 
						||
  cat("Class 'mo'\n")
 | 
						||
  x_names <- names(x)
 | 
						||
  x <- as.character(x)
 | 
						||
  names(x) <- x_names
 | 
						||
  print.default(x, quote = FALSE)
 | 
						||
}
 | 
						||
 | 
						||
#' @exportMethod as.data.frame.mo
 | 
						||
#' @export
 | 
						||
#' @noRd
 | 
						||
as.data.frame.mo <- function (x, ...) {
 | 
						||
  # same as as.data.frame.character but with removed stringsAsFactors, since it will be class "mo"
 | 
						||
  nm <- paste(deparse(substitute(x), width.cutoff = 500L),
 | 
						||
              collapse = " ")
 | 
						||
  if (!"nm" %in% names(list(...))) {
 | 
						||
    as.data.frame.vector(x, ..., nm = nm)
 | 
						||
  } else {
 | 
						||
    as.data.frame.vector(x, ...)
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
#' @exportMethod pull.mo
 | 
						||
#' @export
 | 
						||
#' @importFrom dplyr pull
 | 
						||
#' @noRd
 | 
						||
pull.mo <- function(.data, ...) {
 | 
						||
  pull(as.data.frame(.data), ...)
 | 
						||
}
 |