mirror of https://github.com/msberends/AMR.git
414 lines
17 KiB
R
Executable File
414 lines
17 KiB
R
Executable File
# ==================================================================== #
|
|
# TITLE #
|
|
# AMR: An R Package for Working with Antimicrobial Resistance Data #
|
|
# #
|
|
# SOURCE #
|
|
# https://github.com/msberends/AMR #
|
|
# #
|
|
# CITE AS #
|
|
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
|
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
|
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
|
# doi:10.18637/jss.v104.i03 #
|
|
# #
|
|
# Developed at the University of Groningen and the University Medical #
|
|
# Center Groningen in The Netherlands, in collaboration with many #
|
|
# colleagues from around the world, see our website. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# #
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
|
# ==================================================================== #
|
|
|
|
#' Predict Antimicrobial Resistance
|
|
#'
|
|
#' Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns `se_min` and `se_max`. See *Examples* for a real live example.
|
|
#' @param object model data to be plotted
|
|
#' @param col_ab column name of `x` containing antimicrobial interpretations (`"R"`, `"I"` and `"S"`)
|
|
#' @param col_date column name of the date, will be used to calculate years if this column doesn't consist of years already, defaults to the first column of with a date class
|
|
#' @param year_min lowest year to use in the prediction model, dafaults to the lowest year in `col_date`
|
|
#' @param year_max highest year to use in the prediction model, defaults to 10 years after today
|
|
#' @param year_every unit of sequence between lowest year found in the data and `year_max`
|
|
#' @param minimum minimal amount of available isolates per year to include. Years containing less observations will be estimated by the model.
|
|
#' @param model the statistical model of choice. This could be a generalised linear regression model with binomial distribution (i.e. using `glm(..., family = binomial)`, assuming that a period of zero resistance was followed by a period of increasing resistance leading slowly to more and more resistance. See *Details* for all valid options.
|
|
#' @param I_as_S a [logical] to indicate whether values `"I"` should be treated as `"S"` (will otherwise be treated as `"R"`). The default, `TRUE`, follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section *Interpretation of S, I and R* below.
|
|
#' @param preserve_measurements a [logical] to indicate whether predictions of years that are actually available in the data should be overwritten by the original data. The standard errors of those years will be `NA`.
|
|
#' @param info a [logical] to indicate whether textual analysis should be printed with the name and [summary()] of the statistical model.
|
|
#' @param main title of the plot
|
|
#' @param ribbon a [logical] to indicate whether a ribbon should be shown (default) or error bars
|
|
#' @param ... arguments passed on to functions
|
|
#' @inheritSection as.sir Interpretation of SIR
|
|
#' @inheritParams first_isolate
|
|
#' @inheritParams graphics::plot
|
|
#' @details Valid options for the statistical model (argument `model`) are:
|
|
#' - `"binomial"` or `"binom"` or `"logit"`: a generalised linear regression model with binomial distribution
|
|
#' - `"loglin"` or `"poisson"`: a generalised log-linear regression model with poisson distribution
|
|
#' - `"lin"` or `"linear"`: a linear regression model
|
|
#' @return A [data.frame] with extra class [`resistance_predict`] with columns:
|
|
#' - `year`
|
|
#' - `value`, the same as `estimated` when `preserve_measurements = FALSE`, and a combination of `observed` and `estimated` otherwise
|
|
#' - `se_min`, the lower bound of the standard error with a minimum of `0` (so the standard error will never go below 0%)
|
|
#' - `se_max` the upper bound of the standard error with a maximum of `1` (so the standard error will never go above 100%)
|
|
#' - `observations`, the total number of available observations in that year, i.e. \eqn{S + I + R}
|
|
#' - `observed`, the original observed resistant percentages
|
|
#' - `estimated`, the estimated resistant percentages, calculated by the model
|
|
#'
|
|
#' Furthermore, the model itself is available as an attribute: `attributes(x)$model`, see *Examples*.
|
|
#' @seealso The [proportion()] functions to calculate resistance
|
|
#'
|
|
#' Models: [lm()] [glm()]
|
|
#' @rdname resistance_predict
|
|
#' @export
|
|
#' @importFrom stats predict glm lm
|
|
#' @examples
|
|
#' x <- resistance_predict(example_isolates,
|
|
#' col_ab = "AMX",
|
|
#' year_min = 2010,
|
|
#' model = "binomial"
|
|
#' )
|
|
#' plot(x)
|
|
#' \donttest{
|
|
#' if (require("ggplot2")) {
|
|
#' ggplot_sir_predict(x)
|
|
#' }
|
|
#'
|
|
#' # using dplyr:
|
|
#' if (require("dplyr")) {
|
|
#' x <- example_isolates %>%
|
|
#' filter_first_isolate() %>%
|
|
#' filter(mo_genus(mo) == "Staphylococcus") %>%
|
|
#' resistance_predict("PEN", model = "binomial")
|
|
#' print(plot(x))
|
|
#'
|
|
#' # get the model from the object
|
|
#' mymodel <- attributes(x)$model
|
|
#' summary(mymodel)
|
|
#' }
|
|
#'
|
|
#' # create nice plots with ggplot2 yourself
|
|
#' if (require("dplyr") && require("ggplot2")) {
|
|
#' data <- example_isolates %>%
|
|
#' filter(mo == as.mo("E. coli")) %>%
|
|
#' resistance_predict(
|
|
#' col_ab = "AMX",
|
|
#' col_date = "date",
|
|
#' model = "binomial",
|
|
#' info = FALSE,
|
|
#' minimum = 15
|
|
#' )
|
|
#' head(data)
|
|
#' autoplot(data)
|
|
#' }
|
|
#' }
|
|
resistance_predict <- function(x,
|
|
col_ab,
|
|
col_date = NULL,
|
|
year_min = NULL,
|
|
year_max = NULL,
|
|
year_every = 1,
|
|
minimum = 30,
|
|
model = NULL,
|
|
I_as_S = TRUE,
|
|
preserve_measurements = TRUE,
|
|
info = interactive(),
|
|
...) {
|
|
meet_criteria(x, allow_class = "data.frame")
|
|
meet_criteria(col_ab, allow_class = "character", has_length = 1, is_in = colnames(x))
|
|
meet_criteria(col_date, allow_class = "character", has_length = 1, is_in = colnames(x), allow_NULL = TRUE)
|
|
meet_criteria(year_min, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(year_max, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(year_every, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
|
|
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE)
|
|
meet_criteria(model, allow_class = c("character", "function"), has_length = 1, allow_NULL = TRUE)
|
|
meet_criteria(I_as_S, allow_class = "logical", has_length = 1)
|
|
meet_criteria(preserve_measurements, allow_class = "logical", has_length = 1)
|
|
meet_criteria(info, allow_class = "logical", has_length = 1)
|
|
|
|
stop_if(is.null(model), 'choose a regression model with the `model` argument, e.g. resistance_predict(..., model = "binomial")')
|
|
|
|
x.bak <- x
|
|
x <- as.data.frame(x, stringsAsFactors = FALSE)
|
|
|
|
# -- date
|
|
if (is.null(col_date)) {
|
|
col_date <- search_type_in_df(x = x, type = "date")
|
|
stop_if(is.null(col_date), "`col_date` must be set")
|
|
}
|
|
stop_ifnot(
|
|
col_date %in% colnames(x),
|
|
"column '", col_date, "' not found"
|
|
)
|
|
|
|
year <- function(x) {
|
|
# don't depend on lubridate or so, would be overkill for only this function
|
|
if (all(grepl("^[0-9]{4}$", x))) {
|
|
as.integer(x)
|
|
} else {
|
|
as.integer(format(as.Date(x), "%Y"))
|
|
}
|
|
}
|
|
|
|
df <- x
|
|
df[, col_ab] <- droplevels(as.sir(df[, col_ab, drop = TRUE]))
|
|
if (I_as_S == TRUE) {
|
|
# then I as S
|
|
df[, col_ab] <- gsub("I", "S", df[, col_ab, drop = TRUE], fixed = TRUE)
|
|
} else {
|
|
# then I as R
|
|
df[, col_ab] <- gsub("I", "R", df[, col_ab, drop = TRUE], fixed = TRUE)
|
|
}
|
|
df[, col_ab] <- ifelse(is.na(df[, col_ab, drop = TRUE]), 0, df[, col_ab, drop = TRUE])
|
|
|
|
# remove rows with NAs
|
|
df <- subset(df, !is.na(df[, col_ab, drop = TRUE]))
|
|
df$year <- year(df[, col_date, drop = TRUE])
|
|
df <- as.data.frame(rbind(table(df[, c("year", col_ab), drop = FALSE])),
|
|
stringsAsFactors = FALSE
|
|
)
|
|
df$year <- as.integer(rownames(df))
|
|
rownames(df) <- NULL
|
|
|
|
df <- subset(df, sum(df$R + df$S, na.rm = TRUE) >= minimum)
|
|
# nolint start
|
|
df_matrix <- as.matrix(df[, c("R", "S"), drop = FALSE])
|
|
# nolint end
|
|
|
|
stop_if(NROW(df) == 0, "there are no observations")
|
|
|
|
year_lowest <- min(df$year)
|
|
if (is.null(year_min)) {
|
|
year_min <- year_lowest
|
|
} else {
|
|
year_min <- max(year_min, year_lowest, na.rm = TRUE)
|
|
}
|
|
if (is.null(year_max)) {
|
|
year_max <- year(Sys.Date()) + 10
|
|
}
|
|
|
|
years <- list(year = seq(from = year_min, to = year_max, by = year_every))
|
|
|
|
if (model %in% c("binomial", "binom", "logit")) {
|
|
model <- "binomial"
|
|
model_lm <- with(df, glm(df_matrix ~ year, family = binomial))
|
|
if (isTRUE(info)) {
|
|
cat("\nLogistic regression model (logit) with binomial distribution")
|
|
cat("\n------------------------------------------------------------\n")
|
|
print(summary(model_lm))
|
|
}
|
|
|
|
predictmodel <- predict(model_lm, newdata = years, type = "response", se.fit = TRUE)
|
|
prediction <- predictmodel$fit
|
|
se <- predictmodel$se.fit
|
|
} else if (model %in% c("loglin", "poisson")) {
|
|
model <- "poisson"
|
|
model_lm <- with(df, glm(R ~ year, family = poisson))
|
|
if (isTRUE(info)) {
|
|
cat("\nLog-linear regression model (loglin) with poisson distribution")
|
|
cat("\n--------------------------------------------------------------\n")
|
|
print(summary(model_lm))
|
|
}
|
|
|
|
predictmodel <- predict(model_lm, newdata = years, type = "response", se.fit = TRUE)
|
|
prediction <- predictmodel$fit
|
|
se <- predictmodel$se.fit
|
|
} else if (model %in% c("lin", "linear")) {
|
|
model <- "linear"
|
|
model_lm <- with(df, lm((R / (R + S)) ~ year))
|
|
if (isTRUE(info)) {
|
|
cat("\nLinear regression model")
|
|
cat("\n-----------------------\n")
|
|
print(summary(model_lm))
|
|
}
|
|
|
|
predictmodel <- predict(model_lm, newdata = years, se.fit = TRUE)
|
|
prediction <- predictmodel$fit
|
|
se <- predictmodel$se.fit
|
|
} else {
|
|
stop("no valid model selected. See ?resistance_predict.")
|
|
}
|
|
|
|
# prepare the output dataframe
|
|
df_prediction <- data.frame(
|
|
year = unlist(years),
|
|
value = prediction,
|
|
se_min = prediction - se,
|
|
se_max = prediction + se,
|
|
stringsAsFactors = FALSE
|
|
)
|
|
|
|
if (model == "poisson") {
|
|
df_prediction$value <- as.integer(format(df_prediction$value, scientific = FALSE))
|
|
df_prediction$se_min <- as.integer(df_prediction$se_min)
|
|
df_prediction$se_max <- as.integer(df_prediction$se_max)
|
|
} else {
|
|
# se_max not above 1
|
|
df_prediction$se_max <- pmin(df_prediction$se_max, 1)
|
|
}
|
|
# se_min not below 0
|
|
df_prediction$se_min <- pmax(df_prediction$se_min, 0)
|
|
|
|
df_observations <- data.frame(
|
|
year = df$year,
|
|
observations = df$R + df$S,
|
|
observed = df$R / (df$R + df$S),
|
|
stringsAsFactors = FALSE
|
|
)
|
|
df_prediction <- df_prediction %pm>%
|
|
pm_left_join(df_observations, by = "year")
|
|
df_prediction$estimated <- df_prediction$value
|
|
|
|
if (preserve_measurements == TRUE) {
|
|
# replace estimated data by observed data
|
|
df_prediction$value <- ifelse(!is.na(df_prediction$observed), df_prediction$observed, df_prediction$value)
|
|
df_prediction$se_min <- ifelse(!is.na(df_prediction$observed), NA, df_prediction$se_min)
|
|
df_prediction$se_max <- ifelse(!is.na(df_prediction$observed), NA, df_prediction$se_max)
|
|
}
|
|
|
|
df_prediction$value <- ifelse(df_prediction$value > 1, 1, pmax(df_prediction$value, 0))
|
|
df_prediction <- df_prediction[order(df_prediction$year), , drop = FALSE]
|
|
|
|
out <- as_original_data_class(df_prediction, class(x.bak)) # will remove tibble groups
|
|
structure(out,
|
|
class = c("resistance_predict", class(out)),
|
|
I_as_S = I_as_S,
|
|
model_title = model,
|
|
model = model_lm,
|
|
ab = col_ab
|
|
)
|
|
}
|
|
|
|
#' @rdname resistance_predict
|
|
#' @export
|
|
sir_predict <- resistance_predict
|
|
|
|
#' @method plot resistance_predict
|
|
#' @export
|
|
#' @importFrom graphics plot axis arrows points
|
|
#' @rdname resistance_predict
|
|
plot.resistance_predict <- function(x, main = paste("Resistance Prediction of", x_name), ...) {
|
|
x_name <- paste0(ab_name(attributes(x)$ab), " (", attributes(x)$ab, ")")
|
|
meet_criteria(main, allow_class = "character", has_length = 1)
|
|
|
|
if (attributes(x)$I_as_S == TRUE) {
|
|
ylab <- "%R"
|
|
} else {
|
|
ylab <- "%IR"
|
|
}
|
|
|
|
plot(
|
|
x = x$year,
|
|
y = x$value,
|
|
ylim = c(0, 1),
|
|
yaxt = "n", # no y labels
|
|
pch = 19, # closed dots
|
|
ylab = paste0("Percentage (", ylab, ")"),
|
|
xlab = "Year",
|
|
main = main,
|
|
sub = paste0(
|
|
"(n = ", sum(x$observations, na.rm = TRUE),
|
|
", model: ", attributes(x)$model_title, ")"
|
|
),
|
|
cex.sub = 0.75
|
|
)
|
|
|
|
|
|
axis(side = 2, at = seq(0, 1, 0.1), labels = paste0(0:10 * 10, "%"))
|
|
|
|
# hack for error bars: https://stackoverflow.com/a/22037078/4575331
|
|
arrows(
|
|
x0 = x$year,
|
|
y0 = x$se_min,
|
|
x1 = x$year,
|
|
y1 = x$se_max,
|
|
length = 0.05, angle = 90, code = 3, lwd = 1.5
|
|
)
|
|
|
|
# overlay grey points for prediction
|
|
points(
|
|
x = subset(x, is.na(observations))$year,
|
|
y = subset(x, is.na(observations))$value,
|
|
pch = 19,
|
|
col = "grey40"
|
|
)
|
|
}
|
|
|
|
#' @rdname resistance_predict
|
|
#' @export
|
|
ggplot_sir_predict <- function(x,
|
|
main = paste("Resistance Prediction of", x_name),
|
|
ribbon = TRUE,
|
|
...) {
|
|
x_name <- paste0(ab_name(attributes(x)$ab), " (", attributes(x)$ab, ")")
|
|
meet_criteria(main, allow_class = "character", has_length = 1)
|
|
meet_criteria(ribbon, allow_class = "logical", has_length = 1)
|
|
|
|
stop_ifnot_installed("ggplot2")
|
|
stop_ifnot(inherits(x, "resistance_predict"), "`x` must be a resistance prediction model created with resistance_predict()")
|
|
|
|
if (attributes(x)$I_as_S == TRUE) {
|
|
ylab <- "%R"
|
|
} else {
|
|
ylab <- "%IR"
|
|
}
|
|
|
|
p <- ggplot2::ggplot(
|
|
as.data.frame(x, stringsAsFactors = FALSE),
|
|
ggplot2::aes(x = year, y = value)
|
|
) +
|
|
ggplot2::geom_point(
|
|
data = subset(x, !is.na(observations)),
|
|
size = 2
|
|
) +
|
|
scale_y_percent(limits = c(0, 1)) +
|
|
ggplot2::labs(
|
|
title = main,
|
|
y = paste0("Percentage (", ylab, ")"),
|
|
x = "Year",
|
|
caption = paste0(
|
|
"(n = ", sum(x$observations, na.rm = TRUE),
|
|
", model: ", attributes(x)$model_title, ")"
|
|
)
|
|
)
|
|
|
|
if (ribbon == TRUE) {
|
|
p <- p + ggplot2::geom_ribbon(ggplot2::aes(ymin = se_min, ymax = se_max), alpha = 0.25)
|
|
} else {
|
|
p <- p + ggplot2::geom_errorbar(ggplot2::aes(ymin = se_min, ymax = se_max), na.rm = TRUE, width = 0.5)
|
|
}
|
|
p <- p +
|
|
# overlay grey points for prediction
|
|
ggplot2::geom_point(
|
|
data = subset(x, is.na(observations)),
|
|
size = 2,
|
|
colour = "grey40"
|
|
)
|
|
p
|
|
}
|
|
|
|
#' @method autoplot resistance_predict
|
|
#' @rdname resistance_predict
|
|
# will be exported using s3_register() in R/zzz.R
|
|
autoplot.resistance_predict <- function(object,
|
|
main = paste("Resistance Prediction of", x_name),
|
|
ribbon = TRUE,
|
|
...) {
|
|
x_name <- paste0(ab_name(attributes(object)$ab), " (", attributes(object)$ab, ")")
|
|
meet_criteria(main, allow_class = "character", has_length = 1)
|
|
meet_criteria(ribbon, allow_class = "logical", has_length = 1)
|
|
ggplot_sir_predict(x = object, main = main, ribbon = ribbon, ...)
|
|
}
|
|
|
|
#' @method fortify resistance_predict
|
|
#' @noRd
|
|
# will be exported using s3_register() in R/zzz.R
|
|
fortify.resistance_predict <- function(model, data, ...) {
|
|
as.data.frame(model)
|
|
}
|