mirror of
				https://github.com/msberends/AMR.git
				synced 2025-10-31 03:28:12 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			155 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
			
		
		
	
	
			155 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
| % Generated by roxygen2: do not edit by hand
 | |
| % Please edit documentation in R/portion.R
 | |
| \name{portion}
 | |
| \alias{portion}
 | |
| \alias{portion_R}
 | |
| \alias{portion_IR}
 | |
| \alias{portion_I}
 | |
| \alias{portion_SI}
 | |
| \alias{portion_S}
 | |
| \alias{portion_df}
 | |
| \title{Calculate resistance of isolates}
 | |
| \source{
 | |
| \strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition}, 2014, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}.
 | |
| 
 | |
| Wickham H. \strong{Tidy Data.} The Journal of Statistical Software, vol. 59, 2014. \url{http://vita.had.co.nz/papers/tidy-data.html}
 | |
| }
 | |
| \usage{
 | |
| portion_R(ab1, ab2 = NULL, minimum = 30, as_percent = FALSE)
 | |
| 
 | |
| portion_IR(ab1, ab2 = NULL, minimum = 30, as_percent = FALSE)
 | |
| 
 | |
| portion_I(ab1, minimum = 30, as_percent = FALSE)
 | |
| 
 | |
| portion_SI(ab1, ab2 = NULL, minimum = 30, as_percent = FALSE)
 | |
| 
 | |
| portion_S(ab1, ab2 = NULL, minimum = 30, as_percent = FALSE)
 | |
| 
 | |
| portion_df(data, translate_ab = getOption("get_antibiotic_names",
 | |
|   "official"))
 | |
| }
 | |
| \arguments{
 | |
| \item{ab1}{vector of antibiotic interpretations, they will be transformed internally with \code{\link{as.rsi}} if needed}
 | |
| 
 | |
| \item{ab2}{like \code{ab}, a vector of antibiotic interpretations. Use this to calculate (the lack of) co-resistance: the probability where one of two drugs have a resistant or susceptible result. See Examples.}
 | |
| 
 | |
| \item{minimum}{minimal amount of available isolates. Any number lower than \code{minimum} will return \code{NA}. The default number of \code{30} isolates is advised by the CLSI as best practice, see Source.}
 | |
| 
 | |
| \item{as_percent}{logical to indicate whether the output must be returned as percent (text), will else be a double}
 | |
| 
 | |
| \item{data}{a code{data.frame} containing columns with class \code{rsi} (see \code{\link{as.rsi}})}
 | |
| 
 | |
| \item{translate_ab}{a column name of the \code{\link{antibiotics}} data set to translate the antibiotic abbreviations to, using \code{\link{abname}}. This can be set with \code{\link{getOption}("get_antibiotic_names")}.}
 | |
| }
 | |
| \value{
 | |
| Double or, when \code{as_percent = TRUE}, a character.
 | |
| }
 | |
| \description{
 | |
| These functions can be used to calculate the (co-)resistance of microbial isolates (i.e. percentage S, SI, I, IR or R). All functions can be used in \code{dplyr}s \code{\link[dplyr]{summarise}} and support grouped variables, see \emph{Examples}.
 | |
| 
 | |
| \code{portion_R} and \code{portion_IR} can be used to calculate resistance, \code{portion_S} and \code{portion_SI} can be used to calculate susceptibility.\cr
 | |
| }
 | |
| \details{
 | |
| \strong{Remember that you should filter your table to let it contain only first isolates!} Use \code{\link{first_isolate}} to determine them in your data set.
 | |
| 
 | |
| \code{portion_df} takes any variable from \code{data} that has an \code{"rsi"} class (created with \code{\link{as.rsi}}) and calculates the portions R, I and S. The resulting \emph{tidy data} (see Source) \code{data.frame} will have three rows (S/I/R) and a column for each variable with class \code{"rsi"}.
 | |
| 
 | |
| The old \code{\link{rsi}} function is still available for backwards compatibility but is deprecated.
 | |
| \if{html}{
 | |
|   \cr\cr
 | |
|   To calculate the probability (\emph{p}) of susceptibility of one antibiotic, we use this formula:
 | |
|   \out{<div style="text-align: center">}\figure{mono_therapy.png}\out{</div>}
 | |
|   To calculate the probability (\emph{p}) of susceptibility of more antibiotics (i.e. combination therapy), we need to check whether one of them has a susceptible result (as numerator) and count all cases where all antibiotics were tested (as denominator). \cr
 | |
|   \cr
 | |
|   For two antibiotics:
 | |
|   \out{<div style="text-align: center">}\figure{combi_therapy_2.png}\out{</div>}
 | |
|   \cr
 | |
|   Theoretically for three antibiotics:
 | |
|   \out{<div style="text-align: center">}\figure{combi_therapy_3.png}\out{</div>}
 | |
| }
 | |
| }
 | |
| \examples{
 | |
| # septic_patients is a data set available in the AMR package. It is true, genuine data.
 | |
| ?septic_patients
 | |
| 
 | |
| # Calculate resistance
 | |
| portion_R(septic_patients$amox)
 | |
| portion_IR(septic_patients$amox)
 | |
| 
 | |
| # Or susceptibility
 | |
| portion_S(septic_patients$amox)
 | |
| portion_SI(septic_patients$amox)
 | |
| 
 | |
| # Since n_rsi counts available isolates (and is used as denominator),
 | |
| # you can calculate back to count e.g. non-susceptible isolates:
 | |
| portion_IR(septic_patients$amox) * n_rsi(septic_patients$amox)
 | |
| 
 | |
| library(dplyr)
 | |
| septic_patients \%>\%
 | |
|   group_by(hospital_id) \%>\%
 | |
|   summarise(p = portion_S(cipr),
 | |
|             n = n_rsi(cipr)) # n_rsi works like n_distinct in dplyr
 | |
| 
 | |
| septic_patients \%>\%
 | |
|   group_by(hospital_id) \%>\%
 | |
|   summarise(R = portion_R(cipr, as_percent = TRUE),
 | |
|             I = portion_I(cipr, as_percent = TRUE),
 | |
|             S = portion_S(cipr, as_percent = TRUE),
 | |
|             n = n_rsi(cipr), # works like n_distinct in dplyr
 | |
|             total = n())     # NOT the amount of tested isolates!
 | |
| 
 | |
| # Calculate co-resistance between amoxicillin/clav acid and gentamicin,
 | |
| # so we can see that combination therapy does a lot more than mono therapy:
 | |
| portion_S(septic_patients$amcl) # S = 67.3\%
 | |
| n_rsi(septic_patients$amcl)     # n = 1570
 | |
| 
 | |
| portion_S(septic_patients$gent) # S = 74.0\%
 | |
| n_rsi(septic_patients$gent)     # n = 1842
 | |
| 
 | |
| with(septic_patients,
 | |
|      portion_S(amcl, gent))     # S = 92.1\%
 | |
| with(septic_patients,           # n = 1504
 | |
|      n_rsi(amcl, gent))
 | |
| 
 | |
| septic_patients \%>\%
 | |
|   group_by(hospital_id) \%>\%
 | |
|   summarise(cipro_p = portion_S(cipr, as_percent = TRUE),
 | |
|             cipro_n = n_rsi(cipr),
 | |
|             genta_p = portion_S(gent, as_percent = TRUE),
 | |
|             genta_n = n_rsi(gent),
 | |
|             combination_p = portion_S(cipr, gent, as_percent = TRUE),
 | |
|             combination_n = n_rsi(cipr, gent))
 | |
| 
 | |
| # Get portions S/I/R immediately of all rsi columns
 | |
| septic_patients \%>\%
 | |
|   select(amox, cipr) \%>\%
 | |
|   portion_df(translate = FALSE)
 | |
| 
 | |
| # It also supports grouping variables
 | |
| septic_patients \%>\%
 | |
|   select(hospital_id, amox, cipr) \%>\%
 | |
|   group_by(hospital_id) \%>\%
 | |
|   portion_df(translate = FALSE)
 | |
| 
 | |
| 
 | |
| \dontrun{
 | |
| 
 | |
| # calculate current empiric combination therapy of Helicobacter gastritis:
 | |
| my_table \%>\%
 | |
|   filter(first_isolate == TRUE,
 | |
|          genus == "Helicobacter") \%>\%
 | |
|   summarise(p = portion_S(amox, metr),  # amoxicillin with metronidazole
 | |
|             n = n_rsi(amox, metr))
 | |
| }
 | |
| }
 | |
| \seealso{
 | |
| \code{\link{n_rsi}} to count cases with antimicrobial results.
 | |
| }
 | |
| \keyword{antibiotics}
 | |
| \keyword{isolate}
 | |
| \keyword{isolates}
 | |
| \keyword{resistance}
 | |
| \keyword{rsi}
 | |
| \keyword{rsi_df}
 | |
| \keyword{susceptibility}
 |