mirror of https://github.com/msberends/AMR.git
200 lines
8.1 KiB
R
Executable File
200 lines
8.1 KiB
R
Executable File
# ==================================================================== #
|
|
# TITLE #
|
|
# Antimicrobial Resistance (AMR) Analysis for R #
|
|
# #
|
|
# SOURCE #
|
|
# https://github.com/msberends/AMR #
|
|
# #
|
|
# LICENCE #
|
|
# (c) 2018-2020 Berends MS, Luz CF et al. #
|
|
# Developed at the University of Groningen, the Netherlands, in #
|
|
# collaboration with non-profit organisations Certe Medical #
|
|
# Diagnostics & Advice, and University Medical Center Groningen. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# #
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
# how to conduct AMR analysis: https://msberends.github.io/AMR/ #
|
|
# ==================================================================== #
|
|
|
|
#' Count available isolates
|
|
#'
|
|
#' @description These functions can be used to count resistant/susceptible microbial isolates. All functions support quasiquotation with pipes, can be used in `summarise()` from the `dplyr` package and also support grouped variables, please see *Examples*.
|
|
#'
|
|
#' [count_resistant()] should be used to count resistant isolates, [count_susceptible()] should be used to count susceptible isolates.
|
|
#' @inheritSection lifecycle Stable lifecycle
|
|
#' @param ... one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with [as.rsi()] if needed.
|
|
#' @inheritParams proportion
|
|
#' @inheritSection as.rsi Interpretation of R and S/I
|
|
#' @details These functions are meant to count isolates. Use the [resistance()]/[susceptibility()] functions to calculate microbial resistance/susceptibility.
|
|
#'
|
|
#' The function [count_resistant()] is equal to the function [count_R()]. The function [count_susceptible()] is equal to the function [count_SI()].
|
|
#'
|
|
#' The function [n_rsi()] is an alias of [count_all()]. They can be used to count all available isolates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to `n_distinct()`. Their function is equal to `count_susceptible(...) + count_resistant(...)`.
|
|
#'
|
|
#' The function [count_df()] takes any variable from `data` that has an [`rsi`] class (created with [as.rsi()]) and counts the number of S's, I's and R's. It also supports grouped variables. The function [rsi_df()] works exactly like [count_df()], but adds the percentage of S, I and R.
|
|
#' @inheritSection proportion Combination therapy
|
|
#' @seealso [`proportion_*`][proportion] to calculate microbial resistance and susceptibility.
|
|
#' @return An [integer]
|
|
#' @rdname count
|
|
#' @name count
|
|
#' @export
|
|
#' @inheritSection AMR Read more on our website!
|
|
#' @examples
|
|
#' # example_isolates is a data set available in the AMR package.
|
|
#' ?example_isolates
|
|
#'
|
|
#' count_resistant(example_isolates$AMX) # counts "R"
|
|
#' count_susceptible(example_isolates$AMX) # counts "S" and "I"
|
|
#' count_all(example_isolates$AMX) # counts "S", "I" and "R"
|
|
#'
|
|
#' # be more specific
|
|
#' count_S(example_isolates$AMX)
|
|
#' count_SI(example_isolates$AMX)
|
|
#' count_I(example_isolates$AMX)
|
|
#' count_IR(example_isolates$AMX)
|
|
#' count_R(example_isolates$AMX)
|
|
#'
|
|
#' # Count all available isolates
|
|
#' count_all(example_isolates$AMX)
|
|
#' n_rsi(example_isolates$AMX)
|
|
#'
|
|
#' # n_rsi() is an alias of count_all().
|
|
#' # Since it counts all available isolates, you can
|
|
#' # calculate back to count e.g. susceptible isolates.
|
|
#' # These results are the same:
|
|
#' count_susceptible(example_isolates$AMX)
|
|
#' susceptibility(example_isolates$AMX) * n_rsi(example_isolates$AMX)
|
|
#'
|
|
#'
|
|
#' if (require("dplyr")) {
|
|
#' example_isolates %>%
|
|
#' group_by(hospital_id) %>%
|
|
#' summarise(R = count_R(CIP),
|
|
#' I = count_I(CIP),
|
|
#' S = count_S(CIP),
|
|
#' n1 = count_all(CIP), # the actual total; sum of all three
|
|
#' n2 = n_rsi(CIP), # same - analogous to n_distinct
|
|
#' total = n()) # NOT the number of tested isolates!
|
|
#'
|
|
#' # Count co-resistance between amoxicillin/clav acid and gentamicin,
|
|
#' # so we can see that combination therapy does a lot more than mono therapy.
|
|
#' # Please mind that `susceptibility()` calculates percentages right away instead.
|
|
#' example_isolates %>% count_susceptible(AMC) # 1433
|
|
#' example_isolates %>% count_all(AMC) # 1879
|
|
#'
|
|
#' example_isolates %>% count_susceptible(GEN) # 1399
|
|
#' example_isolates %>% count_all(GEN) # 1855
|
|
#'
|
|
#' example_isolates %>% count_susceptible(AMC, GEN) # 1764
|
|
#' example_isolates %>% count_all(AMC, GEN) # 1936
|
|
#'
|
|
#' # Get number of S+I vs. R immediately of selected columns
|
|
#' example_isolates %>%
|
|
#' select(AMX, CIP) %>%
|
|
#' count_df(translate = FALSE)
|
|
#'
|
|
#' # It also supports grouping variables
|
|
#' example_isolates %>%
|
|
#' select(hospital_id, AMX, CIP) %>%
|
|
#' group_by(hospital_id) %>%
|
|
#' count_df(translate = FALSE)
|
|
#' }
|
|
count_resistant <- function(..., only_all_tested = FALSE) {
|
|
rsi_calc(...,
|
|
ab_result = "R",
|
|
only_all_tested = only_all_tested,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_susceptible <- function(..., only_all_tested = FALSE) {
|
|
rsi_calc(...,
|
|
ab_result = c("S", "I"),
|
|
only_all_tested = only_all_tested,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_R <- function(..., only_all_tested = FALSE) {
|
|
rsi_calc(...,
|
|
ab_result = "R",
|
|
only_all_tested = only_all_tested,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_IR <- function(..., only_all_tested = FALSE) {
|
|
warning("Using 'count_IR' is discouraged; use 'count_resistant()' instead to not consider \"I\" being resistant.", call. = FALSE)
|
|
rsi_calc(...,
|
|
ab_result = c("I", "R"),
|
|
only_all_tested = only_all_tested,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_I <- function(..., only_all_tested = FALSE) {
|
|
rsi_calc(...,
|
|
ab_result = "I",
|
|
only_all_tested = only_all_tested,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_SI <- function(..., only_all_tested = FALSE) {
|
|
rsi_calc(...,
|
|
ab_result = c("S", "I"),
|
|
only_all_tested = only_all_tested,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_S <- function(..., only_all_tested = FALSE) {
|
|
warning("Using 'count_S' is discouraged; use 'count_susceptible()' instead to also consider \"I\" being susceptible.", call. = FALSE)
|
|
rsi_calc(...,
|
|
ab_result = "S",
|
|
only_all_tested = only_all_tested,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_all <- function(..., only_all_tested = FALSE) {
|
|
rsi_calc(...,
|
|
ab_result = c("S", "I", "R"),
|
|
only_all_tested = only_all_tested,
|
|
only_count = TRUE)
|
|
}
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
n_rsi <- count_all
|
|
|
|
#' @rdname count
|
|
#' @export
|
|
count_df <- function(data,
|
|
translate_ab = "name",
|
|
language = get_locale(),
|
|
combine_SI = TRUE,
|
|
combine_IR = FALSE) {
|
|
rsi_calc_df(type = "count",
|
|
data = data,
|
|
translate_ab = translate_ab,
|
|
language = language,
|
|
combine_SI = combine_SI,
|
|
combine_IR = combine_IR,
|
|
combine_SI_missing = missing(combine_SI))
|
|
}
|