mirror of
				https://github.com/msberends/AMR.git
				synced 2025-11-04 16:55:27 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			147 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
			
		
		
	
	
			147 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
# ==================================================================== #
 | 
						|
# TITLE                                                                #
 | 
						|
# AMR: An R Package for Working with Antimicrobial Resistance Data     #
 | 
						|
#                                                                      #
 | 
						|
# SOURCE                                                               #
 | 
						|
# https://github.com/msberends/AMR                                     #
 | 
						|
#                                                                      #
 | 
						|
# CITE AS                                                              #
 | 
						|
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C    #
 | 
						|
# (2022). AMR: An R Package for Working with Antimicrobial Resistance  #
 | 
						|
# Data. Journal of Statistical Software, 104(3), 1-31.                 #
 | 
						|
# doi:10.18637/jss.v104.i03                                            #
 | 
						|
#                                                                      #
 | 
						|
# Developed at the University of Groningen and the University Medical  #
 | 
						|
# Center Groningen in The Netherlands, in collaboration with many      #
 | 
						|
# colleagues from around the world, see our website.                   #
 | 
						|
#                                                                      #
 | 
						|
# This R package is free software; you can freely use and distribute   #
 | 
						|
# it for both personal and commercial purposes under the terms of the  #
 | 
						|
# GNU General Public License version 2.0 (GNU GPL-2), as published by  #
 | 
						|
# the Free Software Foundation.                                        #
 | 
						|
# We created this package for both routine data analysis and academic  #
 | 
						|
# research and it was publicly released in the hope that it will be    #
 | 
						|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY.              #
 | 
						|
#                                                                      #
 | 
						|
# Visit our website for the full manual and a complete tutorial about  #
 | 
						|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/   #
 | 
						|
# ==================================================================== #
 | 
						|
 | 
						|
patients <- unlist(lapply(LETTERS, paste0, 1:10))
 | 
						|
 | 
						|
patients_table <- data.frame(
 | 
						|
  patient_id = patients,
 | 
						|
  gender = c(
 | 
						|
    rep("M", 135),
 | 
						|
    rep("F", 125)
 | 
						|
  )
 | 
						|
)
 | 
						|
 | 
						|
dates <- seq(as.Date("2011-01-01"), as.Date("2020-01-01"), by = "day")
 | 
						|
 | 
						|
bacteria_a <- c(
 | 
						|
  "E. coli", "S. aureus",
 | 
						|
  "S. pneumoniae", "K. pneumoniae"
 | 
						|
)
 | 
						|
 | 
						|
bacteria_b <- c("esccol", "staaur", "strpne", "klepne")
 | 
						|
 | 
						|
bacteria_c <- c(
 | 
						|
  "Escherichia coli", "Staphylococcus aureus",
 | 
						|
  "Streptococcus pneumoniae", "Klebsiella pneumoniae"
 | 
						|
)
 | 
						|
 | 
						|
ab_interpretations <- c("S", "I", "R")
 | 
						|
 | 
						|
ab_interpretations_messy <- c("R", "< 0.5 S", "I")
 | 
						|
 | 
						|
sample_size <- 1000
 | 
						|
 | 
						|
data_a <- data.frame(
 | 
						|
  date = sample(dates, size = sample_size, replace = TRUE),
 | 
						|
  hospital = "A",
 | 
						|
  bacteria = sample(bacteria_a,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.50, 0.25, 0.15, 0.10)
 | 
						|
  ),
 | 
						|
  AMX = sample(ab_interpretations,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.60, 0.05, 0.35)
 | 
						|
  ),
 | 
						|
  AMC = sample(ab_interpretations,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.75, 0.10, 0.15)
 | 
						|
  ),
 | 
						|
  CIP = sample(ab_interpretations,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.80, 0.00, 0.20)
 | 
						|
  ),
 | 
						|
  GEN = sample(ab_interpretations,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.92, 0.00, 0.08)
 | 
						|
  )
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
data_b <- data.frame(
 | 
						|
  date = sample(dates, size = sample_size, replace = TRUE),
 | 
						|
  hospital = "B",
 | 
						|
  bacteria = sample(bacteria_b,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.50, 0.25, 0.15, 0.10)
 | 
						|
  ),
 | 
						|
  AMX = sample(ab_interpretations_messy,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.60, 0.05, 0.35)
 | 
						|
  ),
 | 
						|
  AMC = sample(ab_interpretations_messy,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.75, 0.10, 0.15)
 | 
						|
  ),
 | 
						|
  CIP = sample(ab_interpretations_messy,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.80, 0.00, 0.20)
 | 
						|
  ),
 | 
						|
  GEN = sample(ab_interpretations_messy,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.92, 0.00, 0.08)
 | 
						|
  )
 | 
						|
)
 | 
						|
 | 
						|
data_c <- data.frame(
 | 
						|
  date = sample(dates, size = sample_size, replace = TRUE),
 | 
						|
  hospital = "C",
 | 
						|
  bacteria = sample(bacteria_c,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.50, 0.25, 0.15, 0.10)
 | 
						|
  ),
 | 
						|
  AMX = sample(ab_interpretations,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.60, 0.05, 0.35)
 | 
						|
  ),
 | 
						|
  AMC = sample(ab_interpretations,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.75, 0.10, 0.15)
 | 
						|
  ),
 | 
						|
  CIP = sample(ab_interpretations,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.80, 0.00, 0.20)
 | 
						|
  ),
 | 
						|
  GEN = sample(ab_interpretations,
 | 
						|
    size = sample_size, replace = TRUE,
 | 
						|
    prob = c(0.92, 0.00, 0.08)
 | 
						|
  )
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
example_isolates_unclean <- data_a %>%
 | 
						|
  bind_rows(data_b, data_c)
 | 
						|
 | 
						|
example_isolates_unclean$patient_id <- sample(patients, size = nrow(example_isolates_unclean), replace = TRUE)
 | 
						|
 | 
						|
example_isolates_unclean <- example_isolates_unclean %>%
 | 
						|
  select(patient_id, hospital, date, bacteria, everything()) %>%
 | 
						|
  dataset_UTF8_to_ASCII()
 | 
						|
 | 
						|
usethis::use_data(example_isolates_unclean, overwrite = TRUE, internal = FALSE, version = 2, compress = "xz")
 |