1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-27 17:44:37 +01:00
AMR/articles/resistance_predict.html
2022-08-26 12:11:08 +00:00

349 lines
26 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description" content="AMR">
<title>How to predict antimicrobial resistance • AMR (for R)</title>
<!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png">
<link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png">
<link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png">
<link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png">
<link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png">
<link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png">
<script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link href="../deps/bootstrap-5.1.3/bootstrap.min.css" rel="stylesheet">
<script src="../deps/bootstrap-5.1.3/bootstrap.bundle.min.js"></script><link href="../deps/Fira_Code-0.4.2/font.css" rel="stylesheet">
<!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
<!-- bootstrap-toc --><script src="https://cdn.rawgit.com/afeld/bootstrap-toc/v1.0.1/dist/bootstrap-toc.min.js"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet">
<script src="../extra.js"></script><meta property="og:title" content="How to predict antimicrobial resistance">
<meta property="og:description" content="AMR">
<meta property="og:image" content="https://msberends.github.io/AMR/logo.svg">
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:creator" content="@msberends">
<meta name="twitter:site" content="@univgroningen">
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
<nav class="navbar fixed-top navbar-dark navbar-expand-lg bg-primary"><div class="container">
<a class="navbar-brand me-2" href="../index.html">AMR (for R)</a>
<small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">1.8.1.9027</small>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar" class="collapse navbar-collapse ms-3">
<ul class="navbar-nav me-auto">
<li class="nav-item">
<a class="nav-link" href="../index.html">
<span class="fa fa-home"></span>
Home
</a>
</li>
<li class="active nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown--how-to">
<span class="fa fa-question-circle"></span>
How to
</a>
<div class="dropdown-menu" aria-labelledby="dropdown--how-to">
<a class="dropdown-item" href="../articles/AMR.html">
<span class="fa fa-directions"></span>
Conduct AMR analysis
</a>
<a class="dropdown-item" href="../articles/resistance_predict.html">
<span class="fa fa-dice"></span>
Predict antimicrobial resistance
</a>
<a class="dropdown-item" href="../articles/datasets.html">
<span class="fa fa-database"></span>
Data sets for download / own use
</a>
<a class="dropdown-item" href="../articles/PCA.html">
<span class="fa fa-compress"></span>
Conduct principal component analysis for AMR
</a>
<a class="dropdown-item" href="../articles/MDR.html">
<span class="fa fa-skull-crossbones"></span>
Determine multi-drug resistance (MDR)
</a>
<a class="dropdown-item" href="../articles/WHONET.html">
<span class="fa fa-globe-americas"></span>
Work with WHONET data
</a>
<a class="dropdown-item" href="../articles/SPSS.html">
<span class="fa fa-file-upload"></span>
Import data from SPSS/SAS/Stata
</a>
<a class="dropdown-item" href="../articles/EUCAST.html">
<span class="fa fa-exchange-alt"></span>
Apply EUCAST rules
</a>
<a class="dropdown-item" href="../reference/mo_property.html">
<span class="fa fa-bug"></span>
Get properties of a microorganism
</a>
<a class="dropdown-item" href="../reference/ab_property.html">
<span class="fa fa-capsules"></span>
Get properties of an antibiotic
</a>
</div>
</li>
<li class="nav-item">
<a class="nav-link" href="../reference/index.html">
<span class="fa fa-book-open"></span>
Manual
</a>
</li>
<li class="nav-item">
<a class="nav-link" href="../authors.html">
<span class="fa fa-users"></span>
Authors
</a>
</li>
<li class="nav-item">
<a class="nav-link" href="../news/index.html">
<span class="far fa far fa-newspaper"></span>
Changelog
</a>
</li>
</ul>
<form class="form-inline my-2 my-lg-0" role="search">
<input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="Search for" autocomplete="off">
</form>
<ul class="navbar-nav">
<li class="nav-item">
<a class="external-link nav-link" href="https://github.com/msberends/AMR">
<span class="fab fa fab fa-github"></span>
Source Code
</a>
</li>
</ul>
</div>
</div>
</nav><div class="container template-article">
<div class="row">
<main id="main" class="col-md-9"><div class="page-header">
<img src="../logo.svg" class="logo" alt=""><h1>How to predict antimicrobial resistance</h1>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/HEAD/vignettes/resistance_predict.Rmd" class="external-link"><code>vignettes/resistance_predict.Rmd</code></a></small>
<div class="d-none name"><code>resistance_predict.Rmd</code></div>
</div>
<div class="section level2">
<h2 id="needed-r-packages">Needed R packages<a class="anchor" aria-label="anchor" href="#needed-r-packages"></a>
</h2>
<p>As with many uses in R, we need some additional packages for AMR data analysis. Our package works closely together with the <a href="https://www.tidyverse.org" class="external-link">tidyverse packages</a> <a href="https://dplyr.tidyverse.org/" class="external-link"><code>dplyr</code></a> and <a href="https://ggplot2.tidyverse.org" class="external-link"><code>ggplot2</code></a>. The tidyverse tremendously improves the way we conduct data science - it allows for a very natural way of writing syntaxes and creating beautiful plots in R.</p>
<p>Our <code>AMR</code> package depends on these packages and even extends their use and functions.</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://dplyr.tidyverse.org" class="external-link">dplyr</a></span><span class="op">)</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://ggplot2.tidyverse.org" class="external-link">ggplot2</a></span><span class="op">)</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://msberends.github.io/AMR/">AMR</a></span><span class="op">)</span></span>
<span></span>
<span><span class="co"># (if not yet installed, install with:)</span></span>
<span><span class="co"># install.packages(c("tidyverse", "AMR"))</span></span></code></pre></div>
</div>
<div class="section level2">
<h2 id="prediction-analysis">Prediction analysis<a class="anchor" aria-label="anchor" href="#prediction-analysis"></a>
</h2>
<p>Our package contains a function <code><a href="../reference/resistance_predict.html">resistance_predict()</a></code>, which takes the same input as functions for <a href="./AMR.html">other AMR data analysis</a>. Based on a date column, it calculates cases per year and uses a regression model to predict antimicrobial resistance.</p>
<p>It is basically as easy as:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># resistance prediction of piperacillin/tazobactam (TZP):</span></span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">resistance_predict</span>(<span class="at">tbl =</span> example_isolates, <span class="at">col_date =</span> <span class="st">"date"</span>, <span class="at">col_ab =</span> <span class="st">"TZP"</span>, <span class="at">model =</span> <span class="st">"binomial"</span>)</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="co"># or:</span></span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>example_isolates <span class="sc">%&gt;%</span> </span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a> <span class="fu">resistance_predict</span>(<span class="at">col_ab =</span> <span class="st">"TZP"</span>,</span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a> model <span class="st">"binomial"</span>)</span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="co"># to bind it to object 'predict_TZP' for example:</span></span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>predict_TZP <span class="ot">&lt;-</span> example_isolates <span class="sc">%&gt;%</span> </span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a> <span class="fu">resistance_predict</span>(<span class="at">col_ab =</span> <span class="st">"TZP"</span>,</span>
<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a> <span class="at">model =</span> <span class="st">"binomial"</span>)</span></code></pre></div>
<p>The function will look for a date column itself if <code>col_date</code> is not set.</p>
<p>When running any of these commands, a summary of the regression model will be printed unless using <code>resistance_predict(..., info = FALSE)</code>.</p>
<p>This text is only a printed summary - the actual result (output) of the function is a <code>data.frame</code> containing for each year: the number of observations, the actual observed resistance, the estimated resistance and the standard error below and above the estimation:</p>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">predict_TZP</span></span>
<span><span class="co"># year value se_min se_max observations observed estimated</span></span>
<span><span class="co"># 1 2002 0.20000000 NA NA 15 0.20000000 0.05616378</span></span>
<span><span class="co"># 2 2003 0.06250000 NA NA 32 0.06250000 0.06163839</span></span>
<span><span class="co"># 3 2004 0.08536585 NA NA 82 0.08536585 0.06760841</span></span>
<span><span class="co"># 4 2005 0.05000000 NA NA 60 0.05000000 0.07411100</span></span>
<span><span class="co"># 5 2006 0.05084746 NA NA 59 0.05084746 0.08118454</span></span>
<span><span class="co"># 6 2007 0.12121212 NA NA 66 0.12121212 0.08886843</span></span>
<span><span class="co"># 7 2008 0.04166667 NA NA 72 0.04166667 0.09720264</span></span>
<span><span class="co"># 8 2009 0.01639344 NA NA 61 0.01639344 0.10622731</span></span>
<span><span class="co"># 9 2010 0.05660377 NA NA 53 0.05660377 0.11598223</span></span>
<span><span class="co"># 10 2011 0.18279570 NA NA 93 0.18279570 0.12650615</span></span>
<span><span class="co"># 11 2012 0.30769231 NA NA 65 0.30769231 0.13783610</span></span>
<span><span class="co"># 12 2013 0.06896552 NA NA 58 0.06896552 0.15000651</span></span>
<span><span class="co"># 13 2014 0.10000000 NA NA 60 0.10000000 0.16304829</span></span>
<span><span class="co"># 14 2015 0.23636364 NA NA 55 0.23636364 0.17698785</span></span>
<span><span class="co"># 15 2016 0.22619048 NA NA 84 0.22619048 0.19184597</span></span>
<span><span class="co"># 16 2017 0.16279070 NA NA 86 0.16279070 0.20763675</span></span>
<span><span class="co"># 17 2018 0.22436641 0.1938710 0.2548618 NA NA 0.22436641</span></span>
<span><span class="co"># 18 2019 0.24203228 0.2062911 0.2777735 NA NA 0.24203228</span></span>
<span><span class="co"># 19 2020 0.26062172 0.2191758 0.3020676 NA NA 0.26062172</span></span>
<span><span class="co"># 20 2021 0.28011130 0.2325557 0.3276669 NA NA 0.28011130</span></span>
<span><span class="co"># 21 2022 0.30046606 0.2464567 0.3544755 NA NA 0.30046606</span></span>
<span><span class="co"># 22 2023 0.32163907 0.2609011 0.3823771 NA NA 0.32163907</span></span>
<span><span class="co"># 23 2024 0.34357130 0.2759081 0.4112345 NA NA 0.34357130</span></span>
<span><span class="co"># 24 2025 0.36619175 0.2914934 0.4408901 NA NA 0.36619175</span></span>
<span><span class="co"># 25 2026 0.38941799 0.3076686 0.4711674 NA NA 0.38941799</span></span>
<span><span class="co"># 26 2027 0.41315710 0.3244399 0.5018743 NA NA 0.41315710</span></span>
<span><span class="co"># 27 2028 0.43730688 0.3418075 0.5328063 NA NA 0.43730688</span></span>
<span><span class="co"># 28 2029 0.46175755 0.3597639 0.5637512 NA NA 0.46175755</span></span>
<span><span class="co"># 29 2030 0.48639359 0.3782932 0.5944939 NA NA 0.48639359</span></span>
<span><span class="co"># 30 2031 0.51109592 0.3973697 0.6248221 NA NA 0.51109592</span></span>
<span><span class="co"># 31 2032 0.53574417 0.4169574 0.6545309 NA NA 0.53574417</span></span></code></pre></div>
<p>The function <code>plot</code> is available in base R, and can be extended by other packages to depend the output based on the type of input. We extended its function to cope with resistance predictions:</p>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../reference/plot.html">plot</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span></span></code></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-4-1.png" width="720"></p>
<p>This is the fastest way to plot the result. It automatically adds the right axes, error bars, titles, number of available observations and type of model.</p>
<p>We also support the <code>ggplot2</code> package with our custom function <code><a href="../reference/resistance_predict.html">ggplot_rsi_predict()</a></code> to create more appealing plots:</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span></span></code></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-5-1.png" width="720"></p>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span></span>
<span><span class="co"># choose for error bars instead of a ribbon</span></span>
<span><span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="va">predict_TZP</span>, ribbon <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-5-2.png" width="720"></p>
<div class="section level3">
<h3 id="choosing-the-right-model">Choosing the right model<a class="anchor" aria-label="anchor" href="#choosing-the-right-model"></a>
</h3>
<p>Resistance is not easily predicted; if we look at vancomycin resistance in Gram-positive bacteria, the spread (i.e. standard error) is enormous:</p>
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span><span class="op">(</span><span class="va">mo</span>, language <span class="op">=</span> <span class="cn">NULL</span><span class="op">)</span> <span class="op">==</span> <span class="st">"Gram-positive"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span><span class="op">(</span>col_ab <span class="op">=</span> <span class="st">"VAN"</span>, year_min <span class="op">=</span> <span class="fl">2010</span>, info <span class="op">=</span> <span class="cn">FALSE</span>, model <span class="op">=</span> <span class="st">"binomial"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span> </span>
<span> <span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="op">)</span></span>
<span><span class="co"># Using column 'date' as input for `col_date`.</span></span></code></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-6-1.png" width="720"></p>
<p>Vancomycin resistance could be 100% in ten years, but might remain very low.</p>
<p>You can define the model with the <code>model</code> parameter. The model chosen above is a generalised linear regression model using a binomial distribution, assuming that a period of zero resistance was followed by a period of increasing resistance leading slowly to more and more resistance.</p>
<p>Valid values are:</p>
<table class="table">
<colgroup>
<col width="32%">
<col width="25%">
<col width="42%">
</colgroup>
<thead><tr class="header">
<th>Input values</th>
<th>Function used by R</th>
<th>Type of model</th>
</tr></thead>
<tbody>
<tr class="odd">
<td>
<code>"binomial"</code> or <code>"binom"</code> or <code>"logit"</code>
</td>
<td><code>glm(..., family = binomial)</code></td>
<td>Generalised linear model with binomial distribution</td>
</tr>
<tr class="even">
<td>
<code>"loglin"</code> or <code>"poisson"</code>
</td>
<td><code>glm(..., family = poisson)</code></td>
<td>Generalised linear model with poisson distribution</td>
</tr>
<tr class="odd">
<td>
<code>"lin"</code> or <code>"linear"</code>
</td>
<td><code><a href="https://rdrr.io/r/stats/lm.html" class="external-link">lm()</a></code></td>
<td>Linear model</td>
</tr>
</tbody>
</table>
<p>For the vancomycin resistance in Gram-positive bacteria, a linear model might be more appropriate:</p>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span><span class="op">(</span><span class="va">mo</span>, language <span class="op">=</span> <span class="cn">NULL</span><span class="op">)</span> <span class="op">==</span> <span class="st">"Gram-positive"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span><span class="op">(</span>col_ab <span class="op">=</span> <span class="st">"VAN"</span>, year_min <span class="op">=</span> <span class="fl">2010</span>, info <span class="op">=</span> <span class="cn">FALSE</span>, model <span class="op">=</span> <span class="st">"linear"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span> </span>
<span> <span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="op">)</span></span>
<span><span class="co"># Using column 'date' as input for `col_date`.</span></span></code></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-7-1.png" width="720"></p>
<p>The model itself is also available from the object, as an <code>attribute</code>:</p>
<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">model</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/attributes.html" class="external-link">attributes</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span><span class="op">$</span><span class="va">model</span></span>
<span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span><span class="op">$</span><span class="va">family</span></span>
<span><span class="co"># </span></span>
<span><span class="co"># Family: binomial </span></span>
<span><span class="co"># Link function: logit</span></span>
<span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span><span class="op">$</span><span class="va">coefficients</span></span>
<span><span class="co"># Estimate Std. Error z value Pr(&gt;|z|)</span></span>
<span><span class="co"># (Intercept) -200.67944891 46.17315349 -4.346237 1.384932e-05</span></span>
<span><span class="co"># year 0.09883005 0.02295317 4.305725 1.664395e-05</span></span></code></pre></div>
</div>
</div>
</main><aside class="col-md-3"><nav id="toc"><h2>On this page</h2>
</nav></aside>
</div>
<footer><div class="pkgdown-footer-left">
<p></p>
<p><code>AMR</code> (for R). Developed at the <a target="_blank" href="https://www.rug.nl" class="external-link">University of Groningen</a> in collaboration with non-profit organisations<br><a target="_blank" href="https://www.certe.nl" class="external-link">Certe Medical Diagnostics and Advice Foundation</a> and <a target="_blank" href="https://www.umcg.nl" class="external-link">University Medical Center Groningen</a>.</p>
</div>
<div class="pkgdown-footer-right">
<p></p>
<p><a target="_blank" href="https://www.rug.nl" class="external-link"><img src="https://github.com/msberends/AMR/raw/main/pkgdown/logos/logo_rug.png" style="max-width: 200px;"></a></p>
</div>
</footer>
</div>
</body>
</html>