mirror of
https://github.com/msberends/AMR.git
synced 2024-12-26 19:26:12 +01:00
183 lines
6.1 KiB
Plaintext
183 lines
6.1 KiB
Plaintext
---
|
|
title: "How to create frequency tables"
|
|
author: "Matthijs S. Berends"
|
|
date: '`r format(Sys.Date(), "%d %B %Y")`'
|
|
output:
|
|
rmarkdown::html_vignette:
|
|
toc: true
|
|
toc_depth: 3
|
|
vignette: >
|
|
%\VignetteIndexEntry{How to create frequency tables}
|
|
%\VignetteEncoding{UTF-8}
|
|
%\VignetteEngine{knitr::rmarkdown}
|
|
editor_options:
|
|
chunk_output_type: console
|
|
---
|
|
|
|
```{r setup, include = FALSE, results = 'asis'}
|
|
knitr::opts_chunk$set(
|
|
collapse = TRUE,
|
|
comment = "#",
|
|
results = 'asis',
|
|
fig.width = 7.5,
|
|
fig.height = 4.5
|
|
)
|
|
library(dplyr)
|
|
library(AMR)
|
|
```
|
|
|
|
## Introduction
|
|
|
|
Frequency tables (or frequency distributions) are summaries of the distribution of values in a sample. With the `freq()` function, you can create univariate frequency tables. Multiple variables will be pasted into one variable, so it forces a univariate distribution. We take the `septic_patients` dataset (included in this AMR package) as example.
|
|
|
|
## Frequencies of one variable
|
|
|
|
To only show and quickly review the content of one variable, you can just select this variable in various ways. Let's say we want to get the frequencies of the `gender` variable of the `septic_patients` dataset:
|
|
```{r, echo = TRUE}
|
|
# Any of these will work:
|
|
# freq(septic_patients$gender)
|
|
# freq(septic_patients[, "gender"])
|
|
|
|
# Using tidyverse:
|
|
# septic_patients$gender %>% freq()
|
|
# septic_patients[, "gender"] %>% freq()
|
|
# septic_patients %>% freq("gender")
|
|
|
|
# Probably the fastest and easiest:
|
|
septic_patients %>% freq(gender)
|
|
```
|
|
This immediately shows the class of the variable, its length and availability (i.e. the amount of `NA`), the amount of unique values and (most importantly) that among septic patients men are more prevalent than women.
|
|
|
|
## Frequencies of more than one variable
|
|
|
|
Multiple variables will be pasted into one variable to review individual cases, keeping a univariate frequency table.
|
|
|
|
For illustration, we could add some more variables to the `septic_patients` dataset to learn about bacterial properties:
|
|
```{r, echo = TRUE, results = 'hide'}
|
|
my_patients <- septic_patients %>% left_join_microorganisms()
|
|
```
|
|
Now all variables of the `microorganisms` dataset have been joined to the `septic_patients` dataset. The `microorganisms` dataset consists of the following variables:
|
|
```{r, echo = TRUE, results = 'markup'}
|
|
colnames(microorganisms)
|
|
```
|
|
|
|
If we compare the dimensions between the old and new dataset, we can see that these `r ncol(my_patients) - ncol(septic_patients)` variables were added:
|
|
```{r, echo = TRUE, results = 'markup'}
|
|
dim(septic_patients)
|
|
dim(my_patients)
|
|
```
|
|
|
|
So now the `genus` and `species` variables are available. A frequency table of these combined variables can be created like this:
|
|
```{r, echo = TRUE}
|
|
my_patients %>%
|
|
freq(genus, species, nmax = 15)
|
|
```
|
|
|
|
## Frequencies of numeric values
|
|
|
|
Frequency tables can be created of any input.
|
|
|
|
In case of numeric values (like integers, doubles, etc.) additional descriptive statistics will be calculated and shown into the header:
|
|
|
|
```{r, echo = TRUE}
|
|
# # get age distribution of unique patients
|
|
septic_patients %>%
|
|
distinct(patient_id, .keep_all = TRUE) %>%
|
|
freq(age, nmax = 5, header = TRUE)
|
|
```
|
|
|
|
So the following properties are determined, where `NA` values are always ignored:
|
|
|
|
* **Mean**
|
|
|
|
* **Standard deviation**
|
|
|
|
* **Coefficient of variation** (CV), the standard deviation divided by the mean
|
|
|
|
* **Mean absolute deviation** (MAD), the median of the absolute deviations from the median - a more robust statistic than the standard deviation
|
|
|
|
* **Five numbers of Tukey**, namely: the minimum, Q1, median, Q3 and maximum
|
|
|
|
* **Interquartile range** (IQR), the distance between Q1 and Q3
|
|
|
|
* **Coefficient of quartile variation** (CQV, sometimes called *coefficient of dispersion*), calculated as (Q3 - Q1) / (Q3 + Q1) using `quantile()` with `type = 6` as quantile algorithm to comply with SPSS standards
|
|
|
|
* **Outliers** (total count and unique count)
|
|
|
|
So for example, the above frequency table quickly shows the median age of patients being `r my_patients %>% distinct(patient_id, .keep_all = TRUE) %>% pull(age) %>% median(na.rm = TRUE)`.
|
|
|
|
## Frequencies of factors
|
|
|
|
To sort frequencies of factors on their levels instead of item count, use the `sort.count` parameter.
|
|
|
|
`sort.count` is `TRUE` by default. Compare this default behaviour...
|
|
|
|
```{r, echo = TRUE}
|
|
septic_patients %>%
|
|
freq(hospital_id)
|
|
```
|
|
|
|
... to this, where items are now sorted on factor levels:
|
|
|
|
```{r, echo = TRUE}
|
|
septic_patients %>%
|
|
freq(hospital_id, sort.count = FALSE)
|
|
```
|
|
|
|
All classes will be printed into the header. Variables with the new `rsi` class of this AMR package are actually ordered factors and have three classes (look at `Class` in the header):
|
|
|
|
```{r, echo = TRUE}
|
|
septic_patients %>%
|
|
freq(AMX, header = TRUE)
|
|
```
|
|
|
|
## Frequencies of dates
|
|
|
|
Frequencies of dates will show the oldest and newest date in the data, and the amount of days between them:
|
|
|
|
```{r, echo = TRUE}
|
|
septic_patients %>%
|
|
freq(date, nmax = 5, header = TRUE)
|
|
```
|
|
|
|
## Assigning a frequency table to an object
|
|
|
|
A frequency table is actually a regular `data.frame`, with the exception that it contains an additional class.
|
|
|
|
```{r, echo = TRUE}
|
|
my_df <- septic_patients %>% freq(age)
|
|
class(my_df)
|
|
```
|
|
|
|
Because of this additional class, a frequency table prints like the examples above. But the object itself contains the complete table without a row limitation:
|
|
|
|
```{r, echo = TRUE}
|
|
dim(my_df)
|
|
```
|
|
|
|
## Additional parameters
|
|
|
|
### Parameter `na.rm`
|
|
With the `na.rm` parameter you can remove `NA` values from the frequency table (defaults to `TRUE`, but the number of `NA` values will always be shown into the header):
|
|
|
|
```{r, echo = TRUE}
|
|
septic_patients %>%
|
|
freq(AMX, na.rm = FALSE)
|
|
```
|
|
|
|
### Parameter `row.names`
|
|
A frequency table shows row indices. To remove them, use `row.names = FALSE`:
|
|
|
|
```{r, echo = TRUE}
|
|
septic_patients %>%
|
|
freq(hospital_id, row.names = FALSE)
|
|
```
|
|
|
|
### Parameter `markdown`
|
|
The `markdown` parameter is `TRUE` at default in non-interactive sessions, like in reports created with R Markdown. This will always print all rows, unless `nmax` is set. Without markdown (like in regular R), a frequency table would print like:
|
|
|
|
```{r, echo = TRUE, results = 'markup'}
|
|
septic_patients %>%
|
|
freq(hospital_id, markdown = FALSE)
|
|
```
|