mirror of
https://github.com/msberends/AMR.git
synced 2024-12-25 20:06:12 +01:00
124 lines
4.8 KiB
R
124 lines
4.8 KiB
R
% Generated by roxygen2: do not edit by hand
|
|
% Please edit documentation in R/resistance_predict.R
|
|
\name{resistance_predict}
|
|
\alias{resistance_predict}
|
|
\alias{rsi_predict}
|
|
\title{Predict antimicrobial resistance}
|
|
\usage{
|
|
resistance_predict(tbl, col_ab, col_date, year_min = NULL,
|
|
year_max = NULL, year_every = 1, minimum = 30,
|
|
model = "binomial", I_as_R = TRUE, preserve_measurements = TRUE,
|
|
info = TRUE)
|
|
|
|
rsi_predict(tbl, col_ab, col_date, year_min = NULL, year_max = NULL,
|
|
year_every = 1, minimum = 30, model = "binomial", I_as_R = TRUE,
|
|
preserve_measurements = TRUE, info = TRUE)
|
|
}
|
|
\arguments{
|
|
\item{tbl}{a \code{data.frame} containing isolates.}
|
|
|
|
\item{col_ab}{column name of \code{tbl} with antimicrobial interpretations (\code{R}, \code{I} and \code{S})}
|
|
|
|
\item{col_date}{column name of the date, will be used to calculate years if this column doesn't consist of years already}
|
|
|
|
\item{year_min}{lowest year to use in the prediction model, dafaults the lowest year in \code{col_date}}
|
|
|
|
\item{year_max}{highest year to use in the prediction model, defaults to 15 years after today}
|
|
|
|
\item{year_every}{unit of sequence between lowest year found in the data and \code{year_max}}
|
|
|
|
\item{minimum}{minimal amount of available isolates per year to include. Years containing less observations will be estimated by the model.}
|
|
|
|
\item{model}{the statistical model of choice. Valid values are \code{"binomial"} (or \code{"binom"} or \code{"logit"}) or \code{"loglin"} or \code{"linear"} (or \code{"lin"}).}
|
|
|
|
\item{I_as_R}{treat \code{I} as \code{R}}
|
|
|
|
\item{preserve_measurements}{logical to indicate whether predictions of years that are actually available in the data should be overwritten with the original data. The standard errors of those years will be \code{NA}.}
|
|
|
|
\item{info}{print textual analysis with the name and \code{\link{summary}} of the model.}
|
|
}
|
|
\value{
|
|
\code{data.frame} with columns:
|
|
\itemize{
|
|
\item{\code{year}}
|
|
\item{\code{value}, the same as \code{estimated} when \code{preserve_measurements = FALSE}, and a combination of \code{observed} and \code{estimated} otherwise}
|
|
\item{\code{se_min}, the lower bound of the standard error with a minimum of \code{0}}
|
|
\item{\code{se_max} the upper bound of the standard error with a maximum of \code{1}}
|
|
\item{\code{observations}, the total number of observations, i.e. S + I + R}
|
|
\item{\code{observed}, the original observed values}
|
|
\item{\code{estimated}, the estimated values, calculated by the model}
|
|
}
|
|
}
|
|
\description{
|
|
Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns \code{se_min} and \code{se_max}. See Examples for a real live example.
|
|
}
|
|
\examples{
|
|
\dontrun{
|
|
# use it with base R:
|
|
resistance_predict(tbl = tbl[which(first_isolate == TRUE & genus == "Haemophilus"),],
|
|
col_ab = "amcl", col_date = "date")
|
|
|
|
# or use dplyr so you can actually read it:
|
|
library(dplyr)
|
|
tbl \%>\%
|
|
filter(first_isolate == TRUE,
|
|
genus == "Haemophilus") \%>\%
|
|
resistance_predict(amcl, date)
|
|
}
|
|
|
|
|
|
# real live example:
|
|
library(dplyr)
|
|
septic_patients \%>\%
|
|
# get bacteria properties like genus and species
|
|
left_join_microorganisms("mo") \%>\%
|
|
# calculate first isolates
|
|
mutate(first_isolate =
|
|
first_isolate(.,
|
|
"date",
|
|
"patient_id",
|
|
"mo",
|
|
col_specimen = NA,
|
|
col_icu = NA)) \%>\%
|
|
# filter on first E. coli isolates
|
|
filter(genus == "Escherichia",
|
|
species == "coli",
|
|
first_isolate == TRUE) \%>\%
|
|
# predict resistance of cefotaxime for next years
|
|
resistance_predict(col_ab = "cfot",
|
|
col_date = "date",
|
|
year_max = 2025,
|
|
preserve_measurements = TRUE,
|
|
minimum = 0)
|
|
|
|
# create nice plots with ggplot
|
|
if (!require(ggplot2)) {
|
|
|
|
data <- septic_patients \%>\%
|
|
filter(mo == "ESCCOL") \%>\%
|
|
resistance_predict(col_ab = "amox",
|
|
col_date = "date",
|
|
info = FALSE,
|
|
minimum = 15)
|
|
|
|
ggplot(data,
|
|
aes(x = year)) +
|
|
geom_col(aes(y = value),
|
|
fill = "grey75") +
|
|
geom_errorbar(aes(ymin = se_min,
|
|
ymax = se_max),
|
|
colour = "grey50") +
|
|
scale_y_continuous(limits = c(0, 1),
|
|
breaks = seq(0, 1, 0.1),
|
|
labels = paste0(seq(0, 100, 10), "\%")) +
|
|
labs(title = expression(paste("Forecast of amoxicillin resistance in ",
|
|
italic("E. coli"))),
|
|
y = "\%IR",
|
|
x = "Year") +
|
|
theme_minimal(base_size = 13)
|
|
}
|
|
}
|
|
\seealso{
|
|
The \code{\link{portion}} function to calculate resistance, \cr \code{\link{lm}} \code{\link{glm}}
|
|
}
|