1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-25 00:24:41 +01:00
AMR/articles/resistance_predict.html
2024-12-20 10:03:24 +00:00

281 lines
25 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<title>How to predict antimicrobial resistance • AMR (for R)</title>
<!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png">
<link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png">
<link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png">
<link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png">
<link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png">
<link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png">
<script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet">
<script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><link href="../deps/Lato-0.4.9/font.css" rel="stylesheet">
<link href="../deps/Fira_Code-0.4.9/font.css" rel="stylesheet">
<link href="../deps/font-awesome-6.5.2/css/all.min.css" rel="stylesheet">
<link href="../deps/font-awesome-6.5.2/css/v4-shims.min.css" rel="stylesheet">
<script src="../deps/headroom-0.11.0/headroom.min.js"></script><script src="../deps/headroom-0.11.0/jQuery.headroom.min.js"></script><script src="../deps/bootstrap-toc-1.0.1/bootstrap-toc.min.js"></script><script src="../deps/clipboard.js-2.0.11/clipboard.min.js"></script><script src="../deps/search-1.0.0/autocomplete.jquery.min.js"></script><script src="../deps/search-1.0.0/fuse.min.js"></script><script src="../deps/search-1.0.0/mark.min.js"></script><!-- pkgdown --><script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet">
<script src="../extra.js"></script><meta property="og:title" content="How to predict antimicrobial resistance">
</head>
<body>
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
<nav class="navbar navbar-expand-lg fixed-top bg-primary" data-bs-theme="dark" aria-label="Site navigation"><div class="container">
<a class="navbar-brand me-2" href="../index.html">AMR (for R)</a>
<small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">2.1.1.9122</small>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar" class="collapse navbar-collapse ms-3">
<ul class="navbar-nav me-auto">
<li class="active nav-item dropdown">
<button class="nav-link dropdown-toggle" type="button" id="dropdown-how-to" data-bs-toggle="dropdown" aria-expanded="false" aria-haspopup="true"><span class="fa fa-question-circle"></span> How to</button>
<ul class="dropdown-menu" aria-labelledby="dropdown-how-to">
<li><a class="dropdown-item" href="../articles/AMR.html"><span class="fa fa-directions"></span> Conduct AMR Analysis</a></li>
<li><a class="dropdown-item" href="../reference/antibiogram.html"><span class="fa fa-file-prescription"></span> Generate Antibiogram (Trad./Syndromic/WISCA)</a></li>
<li><a class="dropdown-item" href="../articles/resistance_predict.html"><span class="fa fa-dice"></span> Predict Antimicrobial Resistance</a></li>
<li><a class="dropdown-item" href="../articles/datasets.html"><span class="fa fa-database"></span> Download Data Sets for Own Use</a></li>
<li><a class="dropdown-item" href="../articles/AMR_with_tidymodels.html"><span class="fa fa-square-root-variable"></span> Use AMR for Predictive Modelling (tidymodels)</a></li>
<li><a class="dropdown-item" href="../reference/AMR-options.html"><span class="fa fa-gear"></span> Set User- Or Team-specific Package Settings</a></li>
<li><a class="dropdown-item" href="../articles/PCA.html"><span class="fa fa-compress"></span> Conduct Principal Component Analysis for AMR</a></li>
<li><a class="dropdown-item" href="../articles/MDR.html"><span class="fa fa-skull-crossbones"></span> Determine Multi-Drug Resistance (MDR)</a></li>
<li><a class="dropdown-item" href="../articles/WHONET.html"><span class="fa fa-globe-americas"></span> Work with WHONET Data</a></li>
<li><a class="dropdown-item" href="../articles/EUCAST.html"><span class="fa fa-exchange-alt"></span> Apply Eucast Rules</a></li>
<li><a class="dropdown-item" href="../reference/mo_property.html"><span class="fa fa-bug"></span> Get Taxonomy of a Microorganism</a></li>
<li><a class="dropdown-item" href="../reference/ab_property.html"><span class="fa fa-capsules"></span> Get Properties of an Antibiotic Drug</a></li>
<li><a class="dropdown-item" href="../reference/av_property.html"><span class="fa fa-capsules"></span> Get Properties of an Antiviral Drug</a></li>
</ul>
</li>
<li class="nav-item"><a class="nav-link" href="../articles/AMR_for_Python.html"><span class="fa fab fa-python"></span> AMR for Python</a></li>
<li class="nav-item"><a class="nav-link" href="../reference/index.html"><span class="fa fa-book-open"></span> Manual</a></li>
<li class="nav-item"><a class="nav-link" href="../authors.html"><span class="fa fa-users"></span> Authors</a></li>
</ul>
<ul class="navbar-nav">
<li class="nav-item"><a class="nav-link" href="../news/index.html"><span class="fa far fa-newspaper"></span> Changelog</a></li>
<li class="nav-item"><a class="external-link nav-link" href="https://github.com/msberends/AMR"><span class="fa fab fa-github"></span> Source Code</a></li>
</ul>
</div>
</div>
</nav><div class="container template-article">
<div class="row">
<main id="main" class="col-md-9"><div class="page-header">
<img src="../logo.svg" class="logo" alt=""><h1>How to predict antimicrobial resistance</h1>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/main/vignettes/resistance_predict.Rmd" class="external-link"><code>vignettes/resistance_predict.Rmd</code></a></small>
<div class="d-none name"><code>resistance_predict.Rmd</code></div>
</div>
<div class="section level2">
<h2 id="needed-r-packages">Needed R packages<a class="anchor" aria-label="anchor" href="#needed-r-packages"></a>
</h2>
<p>As with many uses in R, we need some additional packages for AMR data
analysis. Our package works closely together with the <a href="https://www.tidyverse.org" class="external-link">tidyverse packages</a> <a href="https://dplyr.tidyverse.org/" class="external-link"><code>dplyr</code></a> and <a href="https://ggplot2.tidyverse.org" class="external-link"><code>ggplot2</code></a>. The
tidyverse tremendously improves the way we conduct data science - it
allows for a very natural way of writing syntaxes and creating beautiful
plots in R.</p>
<p>Our <code>AMR</code> package depends on these packages and even
extends their use and functions.</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://dplyr.tidyverse.org" class="external-link">dplyr</a></span><span class="op">)</span></span>
<span><span class="co">#&gt; Error in get(paste0(generic, ".", class), envir = get_method_env()) : </span></span>
<span><span class="co">#&gt; object 'type_sum.accel' not found</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://ggplot2.tidyverse.org" class="external-link">ggplot2</a></span><span class="op">)</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://msberends.github.io/AMR/">AMR</a></span><span class="op">)</span></span>
<span></span>
<span><span class="co"># (if not yet installed, install with:)</span></span>
<span><span class="co"># install.packages(c("tidyverse", "AMR"))</span></span></code></pre></div>
</div>
<div class="section level2">
<h2 id="prediction-analysis">Prediction analysis<a class="anchor" aria-label="anchor" href="#prediction-analysis"></a>
</h2>
<p>Our package contains a function <code><a href="../reference/resistance_predict.html">resistance_predict()</a></code>,
which takes the same input as functions for <a href="./AMR.html">other
AMR data analysis</a>. Based on a date column, it calculates cases per
year and uses a regression model to predict antimicrobial
resistance.</p>
<p>It is basically as easy as:</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># resistance prediction of piperacillin/tazobactam (TZP):</span></span>
<span><span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span><span class="op">(</span>tbl <span class="op">=</span> <span class="va">example_isolates</span>, col_date <span class="op">=</span> <span class="st">"date"</span>, col_ab <span class="op">=</span> <span class="st">"TZP"</span>, model <span class="op">=</span> <span class="st">"binomial"</span><span class="op">)</span></span>
<span></span>
<span><span class="co"># or:</span></span>
<span><span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span><span class="op">(</span></span>
<span> col_ab <span class="op">=</span> <span class="st">"TZP"</span>,</span>
<span> model <span class="op">=</span> <span class="st">"binomial"</span></span>
<span> <span class="op">)</span></span>
<span></span>
<span><span class="co"># to bind it to object 'predict_TZP' for example:</span></span>
<span><span class="va">predict_TZP</span> <span class="op">&lt;-</span> <span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span><span class="op">(</span></span>
<span> col_ab <span class="op">=</span> <span class="st">"TZP"</span>,</span>
<span> model <span class="op">=</span> <span class="st">"binomial"</span></span>
<span> <span class="op">)</span></span></code></pre></div>
<p>The function will look for a date column itself if
<code>col_date</code> is not set.</p>
<p>When running any of these commands, a summary of the regression model
will be printed unless using
<code>resistance_predict(..., info = FALSE)</code>.</p>
<p>This text is only a printed summary - the actual result (output) of
the function is a <code>data.frame</code> containing for each year: the
number of observations, the actual observed resistance, the estimated
resistance and the standard error below and above the estimation:</p>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">predict_TZP</span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># A tibble: 33 × 7</span></span></span>
<span><span class="co">#&gt; year value se_min se_max observations observed estimated</span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">*</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; font-style: italic;">&lt;int&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; font-style: italic;">&lt;dbl&gt;</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 1</span> <span style="text-decoration: underline;">2</span>002 0.2 <span style="color: #BB0000;">NA</span> <span style="color: #BB0000;">NA</span> 15 0.2 0.056<span style="text-decoration: underline;">2</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 2</span> <span style="text-decoration: underline;">2</span>003 0.062<span style="text-decoration: underline;">5</span> <span style="color: #BB0000;">NA</span> <span style="color: #BB0000;">NA</span> 32 0.062<span style="text-decoration: underline;">5</span> 0.061<span style="text-decoration: underline;">6</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 3</span> <span style="text-decoration: underline;">2</span>004 0.085<span style="text-decoration: underline;">4</span> <span style="color: #BB0000;">NA</span> <span style="color: #BB0000;">NA</span> 82 0.085<span style="text-decoration: underline;">4</span> 0.067<span style="text-decoration: underline;">6</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 4</span> <span style="text-decoration: underline;">2</span>005 0.05 <span style="color: #BB0000;">NA</span> <span style="color: #BB0000;">NA</span> 60 0.05 0.074<span style="text-decoration: underline;">1</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 5</span> <span style="text-decoration: underline;">2</span>006 0.050<span style="text-decoration: underline;">8</span> <span style="color: #BB0000;">NA</span> <span style="color: #BB0000;">NA</span> 59 0.050<span style="text-decoration: underline;">8</span> 0.081<span style="text-decoration: underline;">2</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 6</span> <span style="text-decoration: underline;">2</span>007 0.121 <span style="color: #BB0000;">NA</span> <span style="color: #BB0000;">NA</span> 66 0.121 0.088<span style="text-decoration: underline;">9</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 7</span> <span style="text-decoration: underline;">2</span>008 0.041<span style="text-decoration: underline;">7</span> <span style="color: #BB0000;">NA</span> <span style="color: #BB0000;">NA</span> 72 0.041<span style="text-decoration: underline;">7</span> 0.097<span style="text-decoration: underline;">2</span></span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 8</span> <span style="text-decoration: underline;">2</span>009 0.016<span style="text-decoration: underline;">4</span> <span style="color: #BB0000;">NA</span> <span style="color: #BB0000;">NA</span> 61 0.016<span style="text-decoration: underline;">4</span> 0.106 </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;"> 9</span> <span style="text-decoration: underline;">2</span>010 0.056<span style="text-decoration: underline;">6</span> <span style="color: #BB0000;">NA</span> <span style="color: #BB0000;">NA</span> 53 0.056<span style="text-decoration: underline;">6</span> 0.116 </span></span>
<span><span class="co">#&gt; <span style="color: #BCBCBC;">10</span> <span style="text-decoration: underline;">2</span>011 0.183 <span style="color: #BB0000;">NA</span> <span style="color: #BB0000;">NA</span> 93 0.183 0.127 </span></span>
<span><span class="co">#&gt; <span style="color: #949494;"># 23 more rows</span></span></span></code></pre></div>
<p>The function <code>plot</code> is available in base R, and can be
extended by other packages to depend the output based on the type of
input. We extended its function to cope with resistance predictions:</p>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../reference/plot.html">plot</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span></span></code></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-4-1.png" width="720"></p>
<p>This is the fastest way to plot the result. It automatically adds the
right axes, error bars, titles, number of available observations and
type of model.</p>
<p>We also support the <code>ggplot2</code> package with our custom
function <code><a href="../reference/resistance_predict.html">ggplot_sir_predict()</a></code> to create more appealing
plots:</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../reference/resistance_predict.html">ggplot_sir_predict</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span></span></code></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-5-1.png" width="720"></p>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span></span>
<span><span class="co"># choose for error bars instead of a ribbon</span></span>
<span><span class="fu"><a href="../reference/resistance_predict.html">ggplot_sir_predict</a></span><span class="op">(</span><span class="va">predict_TZP</span>, ribbon <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-5-2.png" width="720"></p>
<div class="section level3">
<h3 id="choosing-the-right-model">Choosing the right model<a class="anchor" aria-label="anchor" href="#choosing-the-right-model"></a>
</h3>
<p>Resistance is not easily predicted; if we look at vancomycin
resistance in Gram-positive bacteria, the spread (i.e. standard error)
is enormous:</p>
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span><span class="op">(</span><span class="va">mo</span>, language <span class="op">=</span> <span class="cn">NULL</span><span class="op">)</span> <span class="op">==</span> <span class="st">"Gram-positive"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span><span class="op">(</span>col_ab <span class="op">=</span> <span class="st">"VAN"</span>, year_min <span class="op">=</span> <span class="fl">2010</span>, info <span class="op">=</span> <span class="cn">FALSE</span>, model <span class="op">=</span> <span class="st">"binomial"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="../reference/resistance_predict.html">ggplot_sir_predict</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-6-1.png" width="720"></p>
<p>Vancomycin resistance could be 100% in ten years, but might remain
very low.</p>
<p>You can define the model with the <code>model</code> parameter. The
model chosen above is a generalised linear regression model using a
binomial distribution, assuming that a period of zero resistance was
followed by a period of increasing resistance leading slowly to more and
more resistance.</p>
<p>Valid values are:</p>
<table class="table">
<colgroup>
<col width="32%">
<col width="25%">
<col width="42%">
</colgroup>
<thead><tr class="header">
<th>Input values</th>
<th>Function used by R</th>
<th>Type of model</th>
</tr></thead>
<tbody>
<tr class="odd">
<td>
<code>"binomial"</code> or <code>"binom"</code> or
<code>"logit"</code>
</td>
<td><code>glm(..., family = binomial)</code></td>
<td>Generalised linear model with binomial distribution</td>
</tr>
<tr class="even">
<td>
<code>"loglin"</code> or <code>"poisson"</code>
</td>
<td><code>glm(..., family = poisson)</code></td>
<td>Generalised linear model with poisson distribution</td>
</tr>
<tr class="odd">
<td>
<code>"lin"</code> or <code>"linear"</code>
</td>
<td><code><a href="https://rdrr.io/r/stats/lm.html" class="external-link">lm()</a></code></td>
<td>Linear model</td>
</tr>
</tbody>
</table>
<p>For the vancomycin resistance in Gram-positive bacteria, a linear
model might be more appropriate:</p>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span><span class="op">(</span><span class="va">mo</span>, language <span class="op">=</span> <span class="cn">NULL</span><span class="op">)</span> <span class="op">==</span> <span class="st">"Gram-positive"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span><span class="op">(</span>col_ab <span class="op">=</span> <span class="st">"VAN"</span>, year_min <span class="op">=</span> <span class="fl">2010</span>, info <span class="op">=</span> <span class="cn">FALSE</span>, model <span class="op">=</span> <span class="st">"linear"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span>
<span> <span class="fu"><a href="../reference/resistance_predict.html">ggplot_sir_predict</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-7-1.png" width="720"></p>
<p>The model itself is also available from the object, as an
<code>attribute</code>:</p>
<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">model</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/attributes.html" class="external-link">attributes</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span><span class="op">$</span><span class="va">model</span></span>
<span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span><span class="op">$</span><span class="va">family</span></span>
<span><span class="co">#&gt; </span></span>
<span><span class="co">#&gt; Family: binomial </span></span>
<span><span class="co">#&gt; Link function: logit</span></span>
<span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span><span class="op">$</span><span class="va">coefficients</span></span>
<span><span class="co">#&gt; Estimate Std. Error z value Pr(&gt;|z|)</span></span>
<span><span class="co">#&gt; (Intercept) -200.67944891 46.17315349 -4.346237 1.384932e-05</span></span>
<span><span class="co">#&gt; year 0.09883005 0.02295317 4.305725 1.664395e-05</span></span></code></pre></div>
</div>
</div>
</main><aside class="col-md-3"><nav id="toc" aria-label="Table of contents"><h2>On this page</h2>
</nav></aside>
</div>
<footer><div class="pkgdown-footer-left">
<p><code>AMR</code> (for R). Free and open-source, licenced under the <a target="_blank" href="https://github.com/msberends/AMR/blob/main/LICENSE" class="external-link">GNU General Public License version 2.0 (GPL-2)</a>.<br>Developed at the <a target="_blank" href="https://www.rug.nl" class="external-link">University of Groningen</a> and <a target="_blank" href="https://www.umcg.nl" class="external-link">University Medical Center Groningen</a> in The Netherlands.</p>
</div>
<div class="pkgdown-footer-right">
<p><a target="_blank" href="https://www.rug.nl" class="external-link"><img src="https://github.com/msberends/AMR/raw/main/pkgdown/assets/logo_rug.svg" style="max-width: 150px;"></a><a target="_blank" href="https://www.umcg.nl" class="external-link"><img src="https://github.com/msberends/AMR/raw/main/pkgdown/assets/logo_umcg.svg" style="max-width: 150px;"></a></p>
</div>
</footer>
</div>
</body>
</html>