1
0
mirror of https://github.com/msberends/AMR.git synced 2024-12-25 20:06:12 +01:00
AMR/reference/pca.html
2024-12-20 10:03:24 +00:00

202 lines
21 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><title>Principal Component Analysis (for AMR) — pca • AMR (for R)</title><!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png"><link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png"><link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png"><link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png"><link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png"><link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png"><script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet"><script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><link href="../deps/Lato-0.4.9/font.css" rel="stylesheet"><link href="../deps/Fira_Code-0.4.9/font.css" rel="stylesheet"><link href="../deps/font-awesome-6.5.2/css/all.min.css" rel="stylesheet"><link href="../deps/font-awesome-6.5.2/css/v4-shims.min.css" rel="stylesheet"><script src="../deps/headroom-0.11.0/headroom.min.js"></script><script src="../deps/headroom-0.11.0/jQuery.headroom.min.js"></script><script src="../deps/bootstrap-toc-1.0.1/bootstrap-toc.min.js"></script><script src="../deps/clipboard.js-2.0.11/clipboard.min.js"></script><script src="../deps/search-1.0.0/autocomplete.jquery.min.js"></script><script src="../deps/search-1.0.0/fuse.min.js"></script><script src="../deps/search-1.0.0/mark.min.js"></script><!-- pkgdown --><script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet"><script src="../extra.js"></script><meta property="og:title" content="Principal Component Analysis (for AMR) — pca"><meta name="description" content="Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables."><meta property="og:description" content="Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables."><meta property="og:image" content="https://msberends.github.io/AMR/logo.svg"></head><body>
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
<nav class="navbar navbar-expand-lg fixed-top bg-primary" data-bs-theme="dark" aria-label="Site navigation"><div class="container">
<a class="navbar-brand me-2" href="../index.html">AMR (for R)</a>
<small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">2.1.1.9122</small>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar" class="collapse navbar-collapse ms-3">
<ul class="navbar-nav me-auto"><li class="nav-item dropdown">
<button class="nav-link dropdown-toggle" type="button" id="dropdown-how-to" data-bs-toggle="dropdown" aria-expanded="false" aria-haspopup="true"><span class="fa fa-question-circle"></span> How to</button>
<ul class="dropdown-menu" aria-labelledby="dropdown-how-to"><li><a class="dropdown-item" href="../articles/AMR.html"><span class="fa fa-directions"></span> Conduct AMR Analysis</a></li>
<li><a class="dropdown-item" href="../reference/antibiogram.html"><span class="fa fa-file-prescription"></span> Generate Antibiogram (Trad./Syndromic/WISCA)</a></li>
<li><a class="dropdown-item" href="../articles/resistance_predict.html"><span class="fa fa-dice"></span> Predict Antimicrobial Resistance</a></li>
<li><a class="dropdown-item" href="../articles/datasets.html"><span class="fa fa-database"></span> Download Data Sets for Own Use</a></li>
<li><a class="dropdown-item" href="../articles/AMR_with_tidymodels.html"><span class="fa fa-square-root-variable"></span> Use AMR for Predictive Modelling (tidymodels)</a></li>
<li><a class="dropdown-item" href="../reference/AMR-options.html"><span class="fa fa-gear"></span> Set User- Or Team-specific Package Settings</a></li>
<li><a class="dropdown-item" href="../articles/PCA.html"><span class="fa fa-compress"></span> Conduct Principal Component Analysis for AMR</a></li>
<li><a class="dropdown-item" href="../articles/MDR.html"><span class="fa fa-skull-crossbones"></span> Determine Multi-Drug Resistance (MDR)</a></li>
<li><a class="dropdown-item" href="../articles/WHONET.html"><span class="fa fa-globe-americas"></span> Work with WHONET Data</a></li>
<li><a class="dropdown-item" href="../articles/EUCAST.html"><span class="fa fa-exchange-alt"></span> Apply Eucast Rules</a></li>
<li><a class="dropdown-item" href="../reference/mo_property.html"><span class="fa fa-bug"></span> Get Taxonomy of a Microorganism</a></li>
<li><a class="dropdown-item" href="../reference/ab_property.html"><span class="fa fa-capsules"></span> Get Properties of an Antibiotic Drug</a></li>
<li><a class="dropdown-item" href="../reference/av_property.html"><span class="fa fa-capsules"></span> Get Properties of an Antiviral Drug</a></li>
</ul></li>
<li class="nav-item"><a class="nav-link" href="../articles/AMR_for_Python.html"><span class="fa fab fa-python"></span> AMR for Python</a></li>
<li class="active nav-item"><a class="nav-link" href="../reference/index.html"><span class="fa fa-book-open"></span> Manual</a></li>
<li class="nav-item"><a class="nav-link" href="../authors.html"><span class="fa fa-users"></span> Authors</a></li>
</ul><ul class="navbar-nav"><li class="nav-item"><a class="nav-link" href="../news/index.html"><span class="fa far fa-newspaper"></span> Changelog</a></li>
<li class="nav-item"><a class="external-link nav-link" href="https://github.com/msberends/AMR"><span class="fa fab fa-github"></span> Source Code</a></li>
</ul></div>
</div>
</nav><div class="container template-reference-topic">
<div class="row">
<main id="main" class="col-md-9"><div class="page-header">
<img src="../logo.svg" class="logo" alt=""><h1>Principal Component Analysis (for AMR)</h1>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/main/R/pca.R" class="external-link"><code>R/pca.R</code></a></small>
<div class="d-none name"><code>pca.Rd</code></div>
</div>
<div class="ref-description section level2">
<p>Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables.</p>
</div>
<div class="section level2">
<h2 id="ref-usage">Usage<a class="anchor" aria-label="anchor" href="#ref-usage"></a></h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span><span class="fu">pca</span><span class="op">(</span></span>
<span> <span class="va">x</span>,</span>
<span> <span class="va">...</span>,</span>
<span> retx <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> center <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> scale. <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> tol <span class="op">=</span> <span class="cn">NULL</span>,</span>
<span> rank. <span class="op">=</span> <span class="cn">NULL</span></span>
<span><span class="op">)</span></span></code></pre></div>
</div>
<div class="section level2">
<h2 id="arguments">Arguments<a class="anchor" aria-label="anchor" href="#arguments"></a></h2>
<dl><dt id="arg-x">x<a class="anchor" aria-label="anchor" href="#arg-x"></a></dt>
<dd><p>a <a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a> containing <a href="https://rdrr.io/r/base/numeric.html" class="external-link">numeric</a> columns</p></dd>
<dt id="arg--">...<a class="anchor" aria-label="anchor" href="#arg--"></a></dt>
<dd><p>columns of <code>x</code> to be selected for PCA, can be unquoted since it supports quasiquotation.</p></dd>
<dt id="arg-retx">retx<a class="anchor" aria-label="anchor" href="#arg-retx"></a></dt>
<dd><p>a logical value indicating whether the rotated variables
should be returned.</p></dd>
<dt id="arg-center">center<a class="anchor" aria-label="anchor" href="#arg-center"></a></dt>
<dd><p>a logical value indicating whether the variables
should be shifted to be zero centered. Alternately, a vector of
length equal the number of columns of <code>x</code> can be supplied.
The value is passed to <code>scale</code>.</p></dd>
<dt id="arg-scale-">scale.<a class="anchor" aria-label="anchor" href="#arg-scale-"></a></dt>
<dd><p>a logical value indicating whether the variables should
be scaled to have unit variance before the analysis takes
place. The default is <code>FALSE</code> for consistency with S, but
in general scaling is advisable. Alternatively, a vector of length
equal the number of columns of <code>x</code> can be supplied. The
value is passed to <code><a href="https://rdrr.io/r/base/scale.html" class="external-link">scale</a></code>.</p></dd>
<dt id="arg-tol">tol<a class="anchor" aria-label="anchor" href="#arg-tol"></a></dt>
<dd><p>a value indicating the magnitude below which components
should be omitted. (Components are omitted if their
standard deviations are less than or equal to <code>tol</code> times the
standard deviation of the first component.) With the default null
setting, no components are omitted (unless <code>rank.</code> is specified
less than <code>min(dim(x))</code>.). Other settings for <code>tol</code> could be
<code>tol = 0</code> or <code>tol = sqrt(.Machine$double.eps)</code>, which
would omit essentially constant components.</p></dd>
<dt id="arg-rank-">rank.<a class="anchor" aria-label="anchor" href="#arg-rank-"></a></dt>
<dd><p>optionally, a number specifying the maximal rank, i.e.,
maximal number of principal components to be used. Can be set as
alternative or in addition to <code>tol</code>, useful notably when the
desired rank is considerably smaller than the dimensions of the matrix.</p></dd>
</dl></div>
<div class="section level2">
<h2 id="value">Value<a class="anchor" aria-label="anchor" href="#value"></a></h2>
<p>An object of classes pca and <a href="https://rdrr.io/r/stats/prcomp.html" class="external-link">prcomp</a></p>
</div>
<div class="section level2">
<h2 id="details">Details<a class="anchor" aria-label="anchor" href="#details"></a></h2>
<p>The <code>pca()</code> function takes a <a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a> as input and performs the actual PCA with the <span style="R">R</span> function <code><a href="https://rdrr.io/r/stats/prcomp.html" class="external-link">prcomp()</a></code>.</p>
<p>The result of the <code>pca()</code> function is a <a href="https://rdrr.io/r/stats/prcomp.html" class="external-link">prcomp</a> object, with an additional attribute <code>non_numeric_cols</code> which is a vector with the column names of all columns that do not contain <a href="https://rdrr.io/r/base/numeric.html" class="external-link">numeric</a> values. These are probably the groups and labels, and will be used by <code><a href="ggplot_pca.html">ggplot_pca()</a></code>.</p>
</div>
<div class="section level2">
<h2 id="ref-examples">Examples<a class="anchor" aria-label="anchor" href="#ref-examples"></a></h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="co"># `example_isolates` is a data set available in the AMR package.</span></span></span>
<span class="r-in"><span><span class="co"># See ?example_isolates.</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span><span class="co"># \donttest{</span></span></span>
<span class="r-in"><span><span class="kw">if</span> <span class="op">(</span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">require</a></span><span class="op">(</span><span class="st"><a href="https://dplyr.tidyverse.org" class="external-link">"dplyr"</a></span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span></span>
<span class="r-in"><span> <span class="co"># calculate the resistance per group first</span></span></span>
<span class="r-in"><span> <span class="va">resistance_data</span> <span class="op">&lt;-</span> <span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/group_by.html" class="external-link">group_by</a></span><span class="op">(</span></span></span>
<span class="r-in"><span> order <span class="op">=</span> <span class="fu"><a href="mo_property.html">mo_order</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span>, <span class="co"># group on anything, like order</span></span></span>
<span class="r-in"><span> genus <span class="op">=</span> <span class="fu"><a href="mo_property.html">mo_genus</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span> <span class="co"># and genus as we do here;</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="fu"><a href="https://dplyr.tidyverse.org/reference/context.html" class="external-link">n</a></span><span class="op">(</span><span class="op">)</span> <span class="op">&gt;=</span> <span class="fl">30</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span> <span class="co"># filter on only 30 results per group</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/summarise_all.html" class="external-link">summarise_if</a></span><span class="op">(</span><span class="va">is.sir</span>, <span class="va">resistance</span><span class="op">)</span> <span class="co"># then get resistance of all drugs</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="co"># now conduct PCA for certain antimicrobial drugs</span></span></span>
<span class="r-in"><span> <span class="va">pca_result</span> <span class="op">&lt;-</span> <span class="va">resistance_data</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span></span></span>
<span class="r-in"><span> <span class="fu">pca</span><span class="op">(</span><span class="va">AMC</span>, <span class="va">CXM</span>, <span class="va">CTX</span>, <span class="va">CAZ</span>, <span class="va">GEN</span>, <span class="va">TOB</span>, <span class="va">TMP</span>, <span class="va">SXT</span><span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="va">pca_result</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="co"># old base R plotting method:</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/stats/biplot.html" class="external-link">biplot</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="co"># new ggplot2 plotting method using this package:</span></span></span>
<span class="r-in"><span> <span class="kw">if</span> <span class="op">(</span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">require</a></span><span class="op">(</span><span class="st"><a href="https://ggplot2.tidyverse.org" class="external-link">"ggplot2"</a></span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="ggplot_pca.html">ggplot_pca</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="fu"><a href="ggplot_pca.html">ggplot_pca</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span> <span class="op">+</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/scale_viridis.html" class="external-link">scale_colour_viridis_d</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://ggplot2.tidyverse.org/reference/labs.html" class="external-link">labs</a></span><span class="op">(</span>title <span class="op">=</span> <span class="st">"Title here"</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="op">}</span></span></span>
<span class="r-in"><span><span class="op">}</span></span></span>
<span class="r-wrn co"><span class="r-pr">#&gt;</span> <span class="warning">Warning: </span>There were 73 warnings in `summarise()`.</span>
<span class="r-wrn co"><span class="r-pr">#&gt;</span> The first warning was:</span>
<span class="r-wrn co"><span class="r-pr">#&gt;</span> <span style="color: #00BBBB;"></span> In argument: `PEN = (function (..., minimum = 30, as_percent = FALSE,</span>
<span class="r-wrn co"><span class="r-pr">#&gt;</span> only_all_tested = FALSE) ...`.</span>
<span class="r-wrn co"><span class="r-pr">#&gt;</span> <span style="color: #00BBBB;"></span> In group 5: `order = "Lactobacillales"` and `genus = "Enterococcus"`.</span>
<span class="r-wrn co"><span class="r-pr">#&gt;</span> Caused by warning:</span>
<span class="r-wrn co"><span class="r-pr">#&gt;</span> <span style="color: #BBBB00;">!</span> Introducing NA: only 14 results available for PEN in group: order =</span>
<span class="r-wrn co"><span class="r-pr">#&gt;</span> "Lactobacillales", genus = "Enterococcus" (minimum = 30).</span>
<span class="r-wrn co"><span class="r-pr">#&gt;</span> <span style="color: #00BBBB;"></span> Run `dplyr::last_dplyr_warnings()` to see the 72 remaining warnings.</span>
<span class="r-msg co"><span class="r-pr">#&gt;</span> Columns selected for PCA: "AMC", "CAZ", "CTX", "CXM", "GEN", "SXT",</span>
<span class="r-msg co"><span class="r-pr">#&gt;</span> "TMP", and "TOB". Total observations available: 7.</span>
<span class="r-out co"><span class="r-pr">#&gt;</span> Groups (n=4, named as 'order'):</span>
<span class="r-out co"><span class="r-pr">#&gt;</span> [1] "Caryophanales" "Enterobacterales" "Lactobacillales" "Pseudomonadales" </span>
<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
<span class="r-plt img"><img src="pca-1.png" alt="" width="700" height="433"></span>
<span class="r-plt img"><img src="pca-2.png" alt="" width="700" height="433"></span>
<span class="r-in"><span><span class="co"># }</span></span></span>
</code></pre></div>
</div>
</main><aside class="col-md-3"><nav id="toc" aria-label="Table of contents"><h2>On this page</h2>
</nav></aside></div>
<footer><div class="pkgdown-footer-left">
<p><code>AMR</code> (for R). Free and open-source, licenced under the <a target="_blank" href="https://github.com/msberends/AMR/blob/main/LICENSE" class="external-link">GNU General Public License version 2.0 (GPL-2)</a>.<br>Developed at the <a target="_blank" href="https://www.rug.nl" class="external-link">University of Groningen</a> and <a target="_blank" href="https://www.umcg.nl" class="external-link">University Medical Center Groningen</a> in The Netherlands.</p>
</div>
<div class="pkgdown-footer-right">
<p><a target="_blank" href="https://www.rug.nl" class="external-link"><img src="https://github.com/msberends/AMR/raw/main/pkgdown/assets/logo_rug.svg" style="max-width: 150px;"></a><a target="_blank" href="https://www.umcg.nl" class="external-link"><img src="https://github.com/msberends/AMR/raw/main/pkgdown/assets/logo_umcg.svg" style="max-width: 150px;"></a></p>
</div>
</footer></div>
</body></html>